This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every continuous linear operator has a unique adjoint. Theorem 3.10 of Beran p. 104. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnlnadj.1 | ⊢ 𝑇 ∈ LinOp | |
| cnlnadj.2 | ⊢ 𝑇 ∈ ContOp | ||
| Assertion | cnlnadjeui | ⊢ ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnlnadj.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | cnlnadj.2 | ⊢ 𝑇 ∈ ContOp | |
| 3 | 1 2 | cnlnadji | ⊢ ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) |
| 4 | adjmo | ⊢ ∃* 𝑡 ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) | |
| 5 | inss1 | ⊢ ( LinOp ∩ ContOp ) ⊆ LinOp | |
| 6 | 5 | sseli | ⊢ ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 ∈ LinOp ) |
| 7 | lnopf | ⊢ ( 𝑡 ∈ LinOp → 𝑡 : ℋ ⟶ ℋ ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑡 ∈ ( LinOp ∩ ContOp ) → 𝑡 : ℋ ⟶ ℋ ) |
| 9 | simpl | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) → 𝑡 : ℋ ⟶ ℋ ) | |
| 10 | eqcom | ⊢ ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) | |
| 11 | 10 | 2ralbii | ⊢ ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 12 | 1 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 13 | adjsym | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 14 | 12 13 | mpan2 | ⊢ ( 𝑡 : ℋ ⟶ ℋ → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 15 | 11 14 | bitrid | ⊢ ( 𝑡 : ℋ ⟶ ℋ → ( ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 16 | 15 | biimpa | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 17 | 9 16 | jca | ⊢ ( ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) → ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 18 | 8 17 | sylan | ⊢ ( ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) → ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 19 | 18 | moimi | ⊢ ( ∃* 𝑡 ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) → ∃* 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) |
| 20 | df-rmo | ⊢ ( ∃* 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ∃* 𝑡 ( 𝑡 ∈ ( LinOp ∩ ContOp ) ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) | |
| 21 | 19 20 | sylibr | ⊢ ( ∃* 𝑡 ( 𝑡 : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑡 ‘ 𝑥 ) ·ih 𝑦 ) ) → ∃* 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) |
| 22 | 4 21 | ax-mp | ⊢ ∃* 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) |
| 23 | reu5 | ⊢ ( ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ↔ ( ∃ 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ∧ ∃* 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) ) ) | |
| 24 | 3 22 23 | mpbir2an | ⊢ ∃! 𝑡 ∈ ( LinOp ∩ ContOp ) ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) = ( 𝑥 ·ih ( 𝑡 ‘ 𝑦 ) ) |