This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set union of a uniform structure is the Cartesian product of its base. (Contributed by Thierry Arnoux, 5-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustuni | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ 𝑈 = ( 𝑋 × 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustbasel | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝑋 × 𝑋 ) ∈ 𝑈 ) | |
| 2 | ustssxp | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝑢 ∈ 𝑈 ) → 𝑢 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 3 | 2 | ralrimiva | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∀ 𝑢 ∈ 𝑈 𝑢 ⊆ ( 𝑋 × 𝑋 ) ) |
| 4 | pwssb | ⊢ ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ↔ ∀ 𝑢 ∈ 𝑈 𝑢 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 5 | 3 4 | sylibr | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 6 | elpwuni | ⊢ ( ( 𝑋 × 𝑋 ) ∈ 𝑈 → ( 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ↔ ∪ 𝑈 = ( 𝑋 × 𝑋 ) ) ) | |
| 7 | 6 | biimpa | ⊢ ( ( ( 𝑋 × 𝑋 ) ∈ 𝑈 ∧ 𝑈 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) → ∪ 𝑈 = ( 𝑋 × 𝑋 ) ) |
| 8 | 1 5 7 | syl2anc | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ∪ 𝑈 = ( 𝑋 × 𝑋 ) ) |