This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnfld1 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfld1OLD | ⊢ 1 = ( 1r ‘ ℂfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 2 | mullid | ⊢ ( 𝑥 ∈ ℂ → ( 1 · 𝑥 ) = 𝑥 ) | |
| 3 | mulrid | ⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · 1 ) = 𝑥 ) | |
| 4 | 2 3 | jca | ⊢ ( 𝑥 ∈ ℂ → ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ) |
| 5 | 4 | rgen | ⊢ ∀ 𝑥 ∈ ℂ ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) |
| 6 | 1 5 | pm3.2i | ⊢ ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ) |
| 7 | cnring | ⊢ ℂfld ∈ Ring | |
| 8 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 9 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 10 | eqid | ⊢ ( 1r ‘ ℂfld ) = ( 1r ‘ ℂfld ) | |
| 11 | 8 9 10 | isringid | ⊢ ( ℂfld ∈ Ring → ( ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ) ↔ ( 1r ‘ ℂfld ) = 1 ) ) |
| 12 | 7 11 | ax-mp | ⊢ ( ( 1 ∈ ℂ ∧ ∀ 𝑥 ∈ ℂ ( ( 1 · 𝑥 ) = 𝑥 ∧ ( 𝑥 · 1 ) = 𝑥 ) ) ↔ ( 1r ‘ ℂfld ) = 1 ) |
| 13 | 6 12 | mpbi | ⊢ ( 1r ‘ ℂfld ) = 1 |
| 14 | 13 | eqcomi | ⊢ 1 = ( 1r ‘ ℂfld ) |