This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of cnfld1 as of 30-Apr-2025. (Contributed by Stefan O'Rear, 27-Nov-2014) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnfld1OLD | |- 1 = ( 1r ` CCfld ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1cn | |- 1 e. CC |
|
| 2 | mullid | |- ( x e. CC -> ( 1 x. x ) = x ) |
|
| 3 | mulrid | |- ( x e. CC -> ( x x. 1 ) = x ) |
|
| 4 | 2 3 | jca | |- ( x e. CC -> ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) |
| 5 | 4 | rgen | |- A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) |
| 6 | 1 5 | pm3.2i | |- ( 1 e. CC /\ A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) |
| 7 | cnring | |- CCfld e. Ring |
|
| 8 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 9 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 10 | eqid | |- ( 1r ` CCfld ) = ( 1r ` CCfld ) |
|
| 11 | 8 9 10 | isringid | |- ( CCfld e. Ring -> ( ( 1 e. CC /\ A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) <-> ( 1r ` CCfld ) = 1 ) ) |
| 12 | 7 11 | ax-mp | |- ( ( 1 e. CC /\ A. x e. CC ( ( 1 x. x ) = x /\ ( x x. 1 ) = x ) ) <-> ( 1r ` CCfld ) = 1 ) |
| 13 | 6 12 | mpbi | |- ( 1r ` CCfld ) = 1 |
| 14 | 13 | eqcomi | |- 1 = ( 1r ` CCfld ) |