This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers is a complex Banach space. (Contributed by Steve Rodriguez, 4-Jan-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnbn.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
| Assertion | cnbn | ⊢ 𝑈 ∈ CBan |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnbn.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
| 2 | 1 | cnnv | ⊢ 𝑈 ∈ NrmCVec |
| 3 | eqid | ⊢ 〈 〈 + , · 〉 , abs 〉 = 〈 〈 + , · 〉 , abs 〉 | |
| 4 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 5 | 3 4 | cnims | ⊢ ( abs ∘ − ) = ( IndMet ‘ 〈 〈 + , · 〉 , abs 〉 ) |
| 6 | 5 | eqcomi | ⊢ ( IndMet ‘ 〈 〈 + , · 〉 , abs 〉 ) = ( abs ∘ − ) |
| 7 | 6 | cncmet | ⊢ ( IndMet ‘ 〈 〈 + , · 〉 , abs 〉 ) ∈ ( CMet ‘ ℂ ) |
| 8 | 1 | cnnvba | ⊢ ℂ = ( BaseSet ‘ 𝑈 ) |
| 9 | 1 | fveq2i | ⊢ ( IndMet ‘ 𝑈 ) = ( IndMet ‘ 〈 〈 + , · 〉 , abs 〉 ) |
| 10 | 9 | eqcomi | ⊢ ( IndMet ‘ 〈 〈 + , · 〉 , abs 〉 ) = ( IndMet ‘ 𝑈 ) |
| 11 | 8 10 | iscbn | ⊢ ( 𝑈 ∈ CBan ↔ ( 𝑈 ∈ NrmCVec ∧ ( IndMet ‘ 〈 〈 + , · 〉 , abs 〉 ) ∈ ( CMet ‘ ℂ ) ) ) |
| 12 | 2 7 11 | mpbir2an | ⊢ 𝑈 ∈ CBan |