This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complex Banach space is a normed complex vector space with a complete induced metric. (Contributed by NM, 5-Dec-2006) Use isbn instead. (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscbn.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| iscbn.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| Assertion | iscbn | ⊢ ( 𝑈 ∈ CBan ↔ ( 𝑈 ∈ NrmCVec ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscbn.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | iscbn.8 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 3 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( IndMet ‘ 𝑢 ) = ( IndMet ‘ 𝑈 ) ) | |
| 4 | 3 2 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( IndMet ‘ 𝑢 ) = 𝐷 ) |
| 5 | fveq2 | ⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = ( BaseSet ‘ 𝑈 ) ) | |
| 6 | 5 1 | eqtr4di | ⊢ ( 𝑢 = 𝑈 → ( BaseSet ‘ 𝑢 ) = 𝑋 ) |
| 7 | 6 | fveq2d | ⊢ ( 𝑢 = 𝑈 → ( CMet ‘ ( BaseSet ‘ 𝑢 ) ) = ( CMet ‘ 𝑋 ) ) |
| 8 | 4 7 | eleq12d | ⊢ ( 𝑢 = 𝑈 → ( ( IndMet ‘ 𝑢 ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑢 ) ) ↔ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |
| 9 | df-cbn | ⊢ CBan = { 𝑢 ∈ NrmCVec ∣ ( IndMet ‘ 𝑢 ) ∈ ( CMet ‘ ( BaseSet ‘ 𝑢 ) ) } | |
| 10 | 8 9 | elrab2 | ⊢ ( 𝑈 ∈ CBan ↔ ( 𝑈 ∈ NrmCVec ∧ 𝐷 ∈ ( CMet ‘ 𝑋 ) ) ) |