This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers is a complex Banach space. (Contributed by Steve Rodriguez, 4-Jan-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnbn.6 | |- U = <. <. + , x. >. , abs >. |
|
| Assertion | cnbn | |- U e. CBan |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnbn.6 | |- U = <. <. + , x. >. , abs >. |
|
| 2 | 1 | cnnv | |- U e. NrmCVec |
| 3 | eqid | |- <. <. + , x. >. , abs >. = <. <. + , x. >. , abs >. |
|
| 4 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 5 | 3 4 | cnims | |- ( abs o. - ) = ( IndMet ` <. <. + , x. >. , abs >. ) |
| 6 | 5 | eqcomi | |- ( IndMet ` <. <. + , x. >. , abs >. ) = ( abs o. - ) |
| 7 | 6 | cncmet | |- ( IndMet ` <. <. + , x. >. , abs >. ) e. ( CMet ` CC ) |
| 8 | 1 | cnnvba | |- CC = ( BaseSet ` U ) |
| 9 | 1 | fveq2i | |- ( IndMet ` U ) = ( IndMet ` <. <. + , x. >. , abs >. ) |
| 10 | 9 | eqcomi | |- ( IndMet ` <. <. + , x. >. , abs >. ) = ( IndMet ` U ) |
| 11 | 8 10 | iscbn | |- ( U e. CBan <-> ( U e. NrmCVec /\ ( IndMet ` <. <. + , x. >. , abs >. ) e. ( CMet ` CC ) ) ) |
| 12 | 2 7 11 | mpbir2an | |- U e. CBan |