This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| ablpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | ||
| ablpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | ||
| Assertion | ablpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Abel ↔ 𝐿 ∈ Abel ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablpropd.1 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | ablpropd.2 | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐿 ) ) | |
| 3 | ablpropd.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | |
| 4 | 1 2 3 | grppropd | ⊢ ( 𝜑 → ( 𝐾 ∈ Grp ↔ 𝐿 ∈ Grp ) ) |
| 5 | 1 2 3 | cmnpropd | ⊢ ( 𝜑 → ( 𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd ) ) |
| 6 | 4 5 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd ) ↔ ( 𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd ) ) ) |
| 7 | isabl | ⊢ ( 𝐾 ∈ Abel ↔ ( 𝐾 ∈ Grp ∧ 𝐾 ∈ CMnd ) ) | |
| 8 | isabl | ⊢ ( 𝐿 ∈ Abel ↔ ( 𝐿 ∈ Grp ∧ 𝐿 ∈ CMnd ) ) | |
| 9 | 6 7 8 | 3bitr4g | ⊢ ( 𝜑 → ( 𝐾 ∈ Abel ↔ 𝐿 ∈ Abel ) ) |