This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
GRAPH THEORY
Walks, paths and cycles
Closed walks as words
Closed walks of a fixed length as words
clwwlknfi
Metamath Proof Explorer
Description: If there is only a finite number of vertices, the number of closed walks
of fixed length (as words) is also finite. (Contributed by Alexander
van der Vekens , 25-Mar-2018) (Revised by AV , 25-Apr-2021) (Proof
shortened by AV , 22-Mar-2022) (Proof shortened by JJ , 18-Nov-2022)
Ref
Expression
Assertion
clwwlknfi
⊢ Vtx ⁡ G ∈ Fin → N ClWWalksN G ∈ Fin
Proof
Step
Hyp
Ref
Expression
1
clwwlkn
⊢ N ClWWalksN G = w ∈ ClWWalks ⁡ G | w = N
2
wrdnfi
⊢ Vtx ⁡ G ∈ Fin → w ∈ Word Vtx ⁡ G | w = N ∈ Fin
3
clwwlksswrd
⊢ ClWWalks ⁡ G ⊆ Word Vtx ⁡ G
4
rabss2
⊢ ClWWalks ⁡ G ⊆ Word Vtx ⁡ G → w ∈ ClWWalks ⁡ G | w = N ⊆ w ∈ Word Vtx ⁡ G | w = N
5
3 4
mp1i
⊢ Vtx ⁡ G ∈ Fin → w ∈ ClWWalks ⁡ G | w = N ⊆ w ∈ Word Vtx ⁡ G | w = N
6
2 5
ssfid
⊢ Vtx ⁡ G ∈ Fin → w ∈ ClWWalks ⁡ G | w = N ∈ Fin
7
1 6
eqeltrid
⊢ Vtx ⁡ G ∈ Fin → N ClWWalksN G ∈ Fin