This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is only a finite number of vertices, the number of closed walks of fixed length (as words) is also finite. (Contributed by Alexander van der Vekens, 25-Mar-2018) (Revised by AV, 25-Apr-2021) (Proof shortened by AV, 22-Mar-2022) (Proof shortened by JJ, 18-Nov-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlknfi | |- ( ( Vtx ` G ) e. Fin -> ( N ClWWalksN G ) e. Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkn | |- ( N ClWWalksN G ) = { w e. ( ClWWalks ` G ) | ( # ` w ) = N } |
|
| 2 | wrdnfi | |- ( ( Vtx ` G ) e. Fin -> { w e. Word ( Vtx ` G ) | ( # ` w ) = N } e. Fin ) |
|
| 3 | clwwlksswrd | |- ( ClWWalks ` G ) C_ Word ( Vtx ` G ) |
|
| 4 | rabss2 | |- ( ( ClWWalks ` G ) C_ Word ( Vtx ` G ) -> { w e. ( ClWWalks ` G ) | ( # ` w ) = N } C_ { w e. Word ( Vtx ` G ) | ( # ` w ) = N } ) |
|
| 5 | 3 4 | mp1i | |- ( ( Vtx ` G ) e. Fin -> { w e. ( ClWWalks ` G ) | ( # ` w ) = N } C_ { w e. Word ( Vtx ` G ) | ( # ` w ) = N } ) |
| 6 | 2 5 | ssfid | |- ( ( Vtx ` G ) e. Fin -> { w e. ( ClWWalks ` G ) | ( # ` w ) = N } e. Fin ) |
| 7 | 1 6 | eqeltrid | |- ( ( Vtx ` G ) e. Fin -> ( N ClWWalksN G ) e. Fin ) |