This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of closed walks of a fixed length N as words over the set of vertices in a graph G . (Contributed by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 24-Apr-2021) (Revised by AV, 22-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlkn | ⊢ ( 𝑁 ClWWalksN 𝐺 ) = { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( ClWWalks ‘ 𝑔 ) = ( ClWWalks ‘ 𝐺 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑔 = 𝐺 ) → ( ClWWalks ‘ 𝑔 ) = ( ClWWalks ‘ 𝐺 ) ) |
| 3 | eqeq2 | ⊢ ( 𝑛 = 𝑁 → ( ( ♯ ‘ 𝑤 ) = 𝑛 ↔ ( ♯ ‘ 𝑤 ) = 𝑁 ) ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑔 = 𝐺 ) → ( ( ♯ ‘ 𝑤 ) = 𝑛 ↔ ( ♯ ‘ 𝑤 ) = 𝑁 ) ) |
| 5 | 2 4 | rabeqbidv | ⊢ ( ( 𝑛 = 𝑁 ∧ 𝑔 = 𝐺 ) → { 𝑤 ∈ ( ClWWalks ‘ 𝑔 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑛 } = { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) |
| 6 | df-clwwlkn | ⊢ ClWWalksN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( ClWWalks ‘ 𝑔 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑛 } ) | |
| 7 | fvex | ⊢ ( ClWWalks ‘ 𝐺 ) ∈ V | |
| 8 | 7 | rabex | ⊢ { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ∈ V |
| 9 | 5 6 8 | ovmpoa | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 ClWWalksN 𝐺 ) = { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) |
| 10 | 6 | mpondm0 | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |
| 11 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 12 | 11 | clwwlkbp | ⊢ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑤 ≠ ∅ ) ) |
| 13 | 12 | simp2d | ⊢ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 14 | lencl | ⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ 𝑤 ) ∈ ℕ0 ) | |
| 15 | 13 14 | syl | ⊢ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ( ♯ ‘ 𝑤 ) ∈ ℕ0 ) |
| 16 | eleq1 | ⊢ ( ( ♯ ‘ 𝑤 ) = 𝑁 → ( ( ♯ ‘ 𝑤 ) ∈ ℕ0 ↔ 𝑁 ∈ ℕ0 ) ) | |
| 17 | 15 16 | syl5ibcom | ⊢ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ( ( ♯ ‘ 𝑤 ) = 𝑁 → 𝑁 ∈ ℕ0 ) ) |
| 18 | 17 | con3rr3 | ⊢ ( ¬ 𝑁 ∈ ℕ0 → ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ¬ ( ♯ ‘ 𝑤 ) = 𝑁 ) ) |
| 19 | 18 | ralrimiv | ⊢ ( ¬ 𝑁 ∈ ℕ0 → ∀ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ¬ ( ♯ ‘ 𝑤 ) = 𝑁 ) |
| 20 | ral0 | ⊢ ∀ 𝑤 ∈ ∅ ¬ ( ♯ ‘ 𝑤 ) = 𝑁 | |
| 21 | fvprc | ⊢ ( ¬ 𝐺 ∈ V → ( ClWWalks ‘ 𝐺 ) = ∅ ) | |
| 22 | 21 | raleqdv | ⊢ ( ¬ 𝐺 ∈ V → ( ∀ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ¬ ( ♯ ‘ 𝑤 ) = 𝑁 ↔ ∀ 𝑤 ∈ ∅ ¬ ( ♯ ‘ 𝑤 ) = 𝑁 ) ) |
| 23 | 20 22 | mpbiri | ⊢ ( ¬ 𝐺 ∈ V → ∀ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ¬ ( ♯ ‘ 𝑤 ) = 𝑁 ) |
| 24 | 19 23 | jaoi | ⊢ ( ( ¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V ) → ∀ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ¬ ( ♯ ‘ 𝑤 ) = 𝑁 ) |
| 25 | ianor | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ↔ ( ¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V ) ) | |
| 26 | rabeq0 | ⊢ ( { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ∅ ↔ ∀ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ¬ ( ♯ ‘ 𝑤 ) = 𝑁 ) | |
| 27 | 24 25 26 | 3imtr4i | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } = ∅ ) |
| 28 | 10 27 | eqtr4d | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 ClWWalksN 𝐺 ) = { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } ) |
| 29 | 9 28 | pm2.61i | ⊢ ( 𝑁 ClWWalksN 𝐺 ) = { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑁 } |