This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient conditions for ClWWalksN to be empty. (Contributed by Alexander van der Vekens, 15-Sep-2018) (Revised by AV, 24-Apr-2021) (Proof shortened by AV, 24-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlkneq0 | ⊢ ( ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ ) → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | ⊢ ( 𝐺 ∉ V ↔ ¬ 𝐺 ∈ V ) | |
| 2 | ianor | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ↔ ( ¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0 ) ) | |
| 3 | 1 2 | orbi12i | ⊢ ( ( 𝐺 ∉ V ∨ ¬ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) ↔ ( ¬ 𝐺 ∈ V ∨ ( ¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0 ) ) ) |
| 4 | df-nel | ⊢ ( 𝑁 ∉ ℕ ↔ ¬ 𝑁 ∈ ℕ ) | |
| 5 | elnnne0 | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) | |
| 6 | 4 5 | xchbinx | ⊢ ( 𝑁 ∉ ℕ ↔ ¬ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) |
| 7 | 6 | orbi2i | ⊢ ( ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ ) ↔ ( 𝐺 ∉ V ∨ ¬ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) ) |
| 8 | orass | ⊢ ( ( ( ¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0 ) ∨ ¬ 𝑁 ≠ 0 ) ↔ ( ¬ 𝐺 ∈ V ∨ ( ¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0 ) ) ) | |
| 9 | 3 7 8 | 3bitr4i | ⊢ ( ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ ) ↔ ( ( ¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0 ) ∨ ¬ 𝑁 ≠ 0 ) ) |
| 10 | ianor | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ↔ ( ¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V ) ) | |
| 11 | orcom | ⊢ ( ( ¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V ) ↔ ( ¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0 ) ) | |
| 12 | 10 11 | bitri | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ↔ ( ¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0 ) ) |
| 13 | df-clwwlkn | ⊢ ClWWalksN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( ClWWalks ‘ 𝑔 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑛 } ) | |
| 14 | 13 | mpondm0 | ⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |
| 15 | 12 14 | sylbir | ⊢ ( ( ¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |
| 16 | nne | ⊢ ( ¬ 𝑁 ≠ 0 ↔ 𝑁 = 0 ) | |
| 17 | oveq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 ClWWalksN 𝐺 ) = ( 0 ClWWalksN 𝐺 ) ) | |
| 18 | clwwlkn0 | ⊢ ( 0 ClWWalksN 𝐺 ) = ∅ | |
| 19 | 17 18 | eqtrdi | ⊢ ( 𝑁 = 0 → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |
| 20 | 16 19 | sylbi | ⊢ ( ¬ 𝑁 ≠ 0 → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |
| 21 | 15 20 | jaoi | ⊢ ( ( ( ¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0 ) ∨ ¬ 𝑁 ≠ 0 ) → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |
| 22 | 9 21 | sylbi | ⊢ ( ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ ) → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |