This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sufficient conditions for ClWWalksN to be empty. (Contributed by Alexander van der Vekens, 15-Sep-2018) (Revised by AV, 24-Apr-2021) (Proof shortened by AV, 24-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlkneq0 | |- ( ( G e/ _V \/ N e/ NN ) -> ( N ClWWalksN G ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nel | |- ( G e/ _V <-> -. G e. _V ) |
|
| 2 | ianor | |- ( -. ( N e. NN0 /\ N =/= 0 ) <-> ( -. N e. NN0 \/ -. N =/= 0 ) ) |
|
| 3 | 1 2 | orbi12i | |- ( ( G e/ _V \/ -. ( N e. NN0 /\ N =/= 0 ) ) <-> ( -. G e. _V \/ ( -. N e. NN0 \/ -. N =/= 0 ) ) ) |
| 4 | df-nel | |- ( N e/ NN <-> -. N e. NN ) |
|
| 5 | elnnne0 | |- ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) |
|
| 6 | 4 5 | xchbinx | |- ( N e/ NN <-> -. ( N e. NN0 /\ N =/= 0 ) ) |
| 7 | 6 | orbi2i | |- ( ( G e/ _V \/ N e/ NN ) <-> ( G e/ _V \/ -. ( N e. NN0 /\ N =/= 0 ) ) ) |
| 8 | orass | |- ( ( ( -. G e. _V \/ -. N e. NN0 ) \/ -. N =/= 0 ) <-> ( -. G e. _V \/ ( -. N e. NN0 \/ -. N =/= 0 ) ) ) |
|
| 9 | 3 7 8 | 3bitr4i | |- ( ( G e/ _V \/ N e/ NN ) <-> ( ( -. G e. _V \/ -. N e. NN0 ) \/ -. N =/= 0 ) ) |
| 10 | ianor | |- ( -. ( N e. NN0 /\ G e. _V ) <-> ( -. N e. NN0 \/ -. G e. _V ) ) |
|
| 11 | orcom | |- ( ( -. N e. NN0 \/ -. G e. _V ) <-> ( -. G e. _V \/ -. N e. NN0 ) ) |
|
| 12 | 10 11 | bitri | |- ( -. ( N e. NN0 /\ G e. _V ) <-> ( -. G e. _V \/ -. N e. NN0 ) ) |
| 13 | df-clwwlkn | |- ClWWalksN = ( n e. NN0 , g e. _V |-> { w e. ( ClWWalks ` g ) | ( # ` w ) = n } ) |
|
| 14 | 13 | mpondm0 | |- ( -. ( N e. NN0 /\ G e. _V ) -> ( N ClWWalksN G ) = (/) ) |
| 15 | 12 14 | sylbir | |- ( ( -. G e. _V \/ -. N e. NN0 ) -> ( N ClWWalksN G ) = (/) ) |
| 16 | nne | |- ( -. N =/= 0 <-> N = 0 ) |
|
| 17 | oveq1 | |- ( N = 0 -> ( N ClWWalksN G ) = ( 0 ClWWalksN G ) ) |
|
| 18 | clwwlkn0 | |- ( 0 ClWWalksN G ) = (/) |
|
| 19 | 17 18 | eqtrdi | |- ( N = 0 -> ( N ClWWalksN G ) = (/) ) |
| 20 | 16 19 | sylbi | |- ( -. N =/= 0 -> ( N ClWWalksN G ) = (/) ) |
| 21 | 15 20 | jaoi | |- ( ( ( -. G e. _V \/ -. N e. NN0 ) \/ -. N =/= 0 ) -> ( N ClWWalksN G ) = (/) ) |
| 22 | 9 21 | sylbi | |- ( ( G e/ _V \/ N e/ NN ) -> ( N ClWWalksN G ) = (/) ) |