This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word represents a closed walk of length 1 iff this word is a singleton word consisting of a vertex with an attached loop. (Contributed by AV, 11-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlkn1loopb | ⊢ ( 𝑊 ∈ ( 1 ClWWalksN 𝐺 ) ↔ ∃ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝑊 = 〈“ 𝑣 ”〉 ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlkn1 | ⊢ ( 𝑊 ∈ ( 1 ClWWalksN 𝐺 ) ↔ ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) | |
| 2 | wrdl1exs1 | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ∃ 𝑣 ∈ ( Vtx ‘ 𝐺 ) 𝑊 = 〈“ 𝑣 ”〉 ) | |
| 3 | fveq1 | ⊢ ( 𝑊 = 〈“ 𝑣 ”〉 → ( 𝑊 ‘ 0 ) = ( 〈“ 𝑣 ”〉 ‘ 0 ) ) | |
| 4 | s1fv | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( 〈“ 𝑣 ”〉 ‘ 0 ) = 𝑣 ) | |
| 5 | 3 4 | sylan9eq | ⊢ ( ( 𝑊 = 〈“ 𝑣 ”〉 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑊 ‘ 0 ) = 𝑣 ) |
| 6 | 5 | sneqd | ⊢ ( ( 𝑊 = 〈“ 𝑣 ”〉 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → { ( 𝑊 ‘ 0 ) } = { 𝑣 } ) |
| 7 | 6 | eleq1d | ⊢ ( ( 𝑊 = 〈“ 𝑣 ”〉 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 8 | 7 | biimpd | ⊢ ( ( 𝑊 = 〈“ 𝑣 ”〉 ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 9 | 8 | ex | ⊢ ( 𝑊 = 〈“ 𝑣 ”〉 → ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 10 | 9 | com13 | ⊢ ( { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( 𝑊 = 〈“ 𝑣 ”〉 → { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 11 | 10 | imp | ⊢ ( ( { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑊 = 〈“ 𝑣 ”〉 → { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 12 | 11 | ancld | ⊢ ( ( { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ∧ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝑊 = 〈“ 𝑣 ”〉 → ( 𝑊 = 〈“ 𝑣 ”〉 ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 13 | 12 | reximdva | ⊢ ( { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ( ∃ 𝑣 ∈ ( Vtx ‘ 𝐺 ) 𝑊 = 〈“ 𝑣 ”〉 → ∃ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝑊 = 〈“ 𝑣 ”〉 ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 14 | 2 13 | syl5com | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝑊 = 〈“ 𝑣 ”〉 ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 15 | 14 | expcom | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ∃ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝑊 = 〈“ 𝑣 ”〉 ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 16 | 15 | 3imp | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ∃ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝑊 = 〈“ 𝑣 ”〉 ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 17 | s1len | ⊢ ( ♯ ‘ 〈“ 𝑣 ”〉 ) = 1 | |
| 18 | 17 | a1i | ⊢ ( ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) → ( ♯ ‘ 〈“ 𝑣 ”〉 ) = 1 ) |
| 19 | s1cl | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → 〈“ 𝑣 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 20 | 19 | adantr | ⊢ ( ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) → 〈“ 𝑣 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 21 | 4 | eqcomd | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → 𝑣 = ( 〈“ 𝑣 ”〉 ‘ 0 ) ) |
| 22 | 21 | sneqd | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → { 𝑣 } = { ( 〈“ 𝑣 ”〉 ‘ 0 ) } ) |
| 23 | 22 | eleq1d | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 〈“ 𝑣 ”〉 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 24 | 23 | biimpd | ⊢ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) → ( { 𝑣 } ∈ ( Edg ‘ 𝐺 ) → { ( 〈“ 𝑣 ”〉 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 25 | 24 | imp | ⊢ ( ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) → { ( 〈“ 𝑣 ”〉 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 26 | 18 20 25 | 3jca | ⊢ ( ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) → ( ( ♯ ‘ 〈“ 𝑣 ”〉 ) = 1 ∧ 〈“ 𝑣 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 〈“ 𝑣 ”〉 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 27 | 26 | adantrl | ⊢ ( ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 = 〈“ 𝑣 ”〉 ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( ♯ ‘ 〈“ 𝑣 ”〉 ) = 1 ∧ 〈“ 𝑣 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 〈“ 𝑣 ”〉 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 28 | fveqeq2 | ⊢ ( 𝑊 = 〈“ 𝑣 ”〉 → ( ( ♯ ‘ 𝑊 ) = 1 ↔ ( ♯ ‘ 〈“ 𝑣 ”〉 ) = 1 ) ) | |
| 29 | eleq1 | ⊢ ( 𝑊 = 〈“ 𝑣 ”〉 → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ↔ 〈“ 𝑣 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) ) | |
| 30 | 3 | sneqd | ⊢ ( 𝑊 = 〈“ 𝑣 ”〉 → { ( 𝑊 ‘ 0 ) } = { ( 〈“ 𝑣 ”〉 ‘ 0 ) } ) |
| 31 | 30 | eleq1d | ⊢ ( 𝑊 = 〈“ 𝑣 ”〉 → ( { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 〈“ 𝑣 ”〉 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 32 | 28 29 31 | 3anbi123d | ⊢ ( 𝑊 = 〈“ 𝑣 ”〉 → ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( ♯ ‘ 〈“ 𝑣 ”〉 ) = 1 ∧ 〈“ 𝑣 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 〈“ 𝑣 ”〉 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 33 | 32 | ad2antrl | ⊢ ( ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 = 〈“ 𝑣 ”〉 ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( ♯ ‘ 〈“ 𝑣 ”〉 ) = 1 ∧ 〈“ 𝑣 ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 〈“ 𝑣 ”〉 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 34 | 27 33 | mpbird | ⊢ ( ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 = 〈“ 𝑣 ”〉 ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 35 | 34 | rexlimiva | ⊢ ( ∃ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝑊 = 〈“ 𝑣 ”〉 ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) → ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 36 | 16 35 | impbii | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ∃ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝑊 = 〈“ 𝑣 ”〉 ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 37 | 1 36 | bitri | ⊢ ( 𝑊 ∈ ( 1 ClWWalksN 𝐺 ) ↔ ∃ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ( 𝑊 = 〈“ 𝑣 ”〉 ∧ { 𝑣 } ∈ ( Edg ‘ 𝐺 ) ) ) |