This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of closed walks of a fixed length N as words over the set of vertices in a graph G . (Contributed by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 24-Apr-2021) (Revised by AV, 22-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlkn | |- ( N ClWWalksN G ) = { w e. ( ClWWalks ` G ) | ( # ` w ) = N } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( g = G -> ( ClWWalks ` g ) = ( ClWWalks ` G ) ) |
|
| 2 | 1 | adantl | |- ( ( n = N /\ g = G ) -> ( ClWWalks ` g ) = ( ClWWalks ` G ) ) |
| 3 | eqeq2 | |- ( n = N -> ( ( # ` w ) = n <-> ( # ` w ) = N ) ) |
|
| 4 | 3 | adantr | |- ( ( n = N /\ g = G ) -> ( ( # ` w ) = n <-> ( # ` w ) = N ) ) |
| 5 | 2 4 | rabeqbidv | |- ( ( n = N /\ g = G ) -> { w e. ( ClWWalks ` g ) | ( # ` w ) = n } = { w e. ( ClWWalks ` G ) | ( # ` w ) = N } ) |
| 6 | df-clwwlkn | |- ClWWalksN = ( n e. NN0 , g e. _V |-> { w e. ( ClWWalks ` g ) | ( # ` w ) = n } ) |
|
| 7 | fvex | |- ( ClWWalks ` G ) e. _V |
|
| 8 | 7 | rabex | |- { w e. ( ClWWalks ` G ) | ( # ` w ) = N } e. _V |
| 9 | 5 6 8 | ovmpoa | |- ( ( N e. NN0 /\ G e. _V ) -> ( N ClWWalksN G ) = { w e. ( ClWWalks ` G ) | ( # ` w ) = N } ) |
| 10 | 6 | mpondm0 | |- ( -. ( N e. NN0 /\ G e. _V ) -> ( N ClWWalksN G ) = (/) ) |
| 11 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 12 | 11 | clwwlkbp | |- ( w e. ( ClWWalks ` G ) -> ( G e. _V /\ w e. Word ( Vtx ` G ) /\ w =/= (/) ) ) |
| 13 | 12 | simp2d | |- ( w e. ( ClWWalks ` G ) -> w e. Word ( Vtx ` G ) ) |
| 14 | lencl | |- ( w e. Word ( Vtx ` G ) -> ( # ` w ) e. NN0 ) |
|
| 15 | 13 14 | syl | |- ( w e. ( ClWWalks ` G ) -> ( # ` w ) e. NN0 ) |
| 16 | eleq1 | |- ( ( # ` w ) = N -> ( ( # ` w ) e. NN0 <-> N e. NN0 ) ) |
|
| 17 | 15 16 | syl5ibcom | |- ( w e. ( ClWWalks ` G ) -> ( ( # ` w ) = N -> N e. NN0 ) ) |
| 18 | 17 | con3rr3 | |- ( -. N e. NN0 -> ( w e. ( ClWWalks ` G ) -> -. ( # ` w ) = N ) ) |
| 19 | 18 | ralrimiv | |- ( -. N e. NN0 -> A. w e. ( ClWWalks ` G ) -. ( # ` w ) = N ) |
| 20 | ral0 | |- A. w e. (/) -. ( # ` w ) = N |
|
| 21 | fvprc | |- ( -. G e. _V -> ( ClWWalks ` G ) = (/) ) |
|
| 22 | 21 | raleqdv | |- ( -. G e. _V -> ( A. w e. ( ClWWalks ` G ) -. ( # ` w ) = N <-> A. w e. (/) -. ( # ` w ) = N ) ) |
| 23 | 20 22 | mpbiri | |- ( -. G e. _V -> A. w e. ( ClWWalks ` G ) -. ( # ` w ) = N ) |
| 24 | 19 23 | jaoi | |- ( ( -. N e. NN0 \/ -. G e. _V ) -> A. w e. ( ClWWalks ` G ) -. ( # ` w ) = N ) |
| 25 | ianor | |- ( -. ( N e. NN0 /\ G e. _V ) <-> ( -. N e. NN0 \/ -. G e. _V ) ) |
|
| 26 | rabeq0 | |- ( { w e. ( ClWWalks ` G ) | ( # ` w ) = N } = (/) <-> A. w e. ( ClWWalks ` G ) -. ( # ` w ) = N ) |
|
| 27 | 24 25 26 | 3imtr4i | |- ( -. ( N e. NN0 /\ G e. _V ) -> { w e. ( ClWWalks ` G ) | ( # ` w ) = N } = (/) ) |
| 28 | 10 27 | eqtr4d | |- ( -. ( N e. NN0 /\ G e. _V ) -> ( N ClWWalksN G ) = { w e. ( ClWWalks ` G ) | ( # ` w ) = N } ) |
| 29 | 9 28 | pm2.61i | |- ( N ClWWalksN G ) = { w e. ( ClWWalks ` G ) | ( # ` w ) = N } |