This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for the shift operation. (Contributed by NM, 4-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | shftfval.1 | ⊢ 𝐹 ∈ V | |
| Assertion | shftcan1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐹 shift 𝐴 ) shift - 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | shftfval.1 | ⊢ 𝐹 ∈ V | |
| 2 | negcl | ⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) | |
| 3 | 1 | 2shfti | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐴 ∈ ℂ ) → ( ( 𝐹 shift 𝐴 ) shift - 𝐴 ) = ( 𝐹 shift ( 𝐴 + - 𝐴 ) ) ) |
| 4 | 2 3 | mpdan | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐹 shift 𝐴 ) shift - 𝐴 ) = ( 𝐹 shift ( 𝐴 + - 𝐴 ) ) ) |
| 5 | negid | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 + - 𝐴 ) = 0 ) | |
| 6 | 5 | oveq2d | ⊢ ( 𝐴 ∈ ℂ → ( 𝐹 shift ( 𝐴 + - 𝐴 ) ) = ( 𝐹 shift 0 ) ) |
| 7 | 4 6 | eqtrd | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝐹 shift 𝐴 ) shift - 𝐴 ) = ( 𝐹 shift 0 ) ) |
| 8 | 7 | fveq1d | ⊢ ( 𝐴 ∈ ℂ → ( ( ( 𝐹 shift 𝐴 ) shift - 𝐴 ) ‘ 𝐵 ) = ( ( 𝐹 shift 0 ) ‘ 𝐵 ) ) |
| 9 | 1 | shftidt | ⊢ ( 𝐵 ∈ ℂ → ( ( 𝐹 shift 0 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 10 | 8 9 | sylan9eq | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( ( 𝐹 shift 𝐴 ) shift - 𝐴 ) ‘ 𝐵 ) = ( 𝐹 ‘ 𝐵 ) ) |