This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of climinf using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017) (Revised by AV, 15-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climinff.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| climinff.2 | ⊢ Ⅎ 𝑘 𝐹 | ||
| climinff.3 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | ||
| climinff.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climinff.5 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) | ||
| climinff.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| climinff.7 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | climinff | ⊢ ( 𝜑 → 𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climinff.1 | ⊢ Ⅎ 𝑘 𝜑 | |
| 2 | climinff.2 | ⊢ Ⅎ 𝑘 𝐹 | |
| 3 | climinff.3 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 4 | climinff.4 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 5 | climinff.5 | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ ) | |
| 6 | climinff.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 7 | climinff.7 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 8 | nfv | ⊢ Ⅎ 𝑘 𝑗 ∈ 𝑍 | |
| 9 | 1 8 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) |
| 10 | nfcv | ⊢ Ⅎ 𝑘 ( 𝑗 + 1 ) | |
| 11 | 2 10 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ ( 𝑗 + 1 ) ) |
| 12 | nfcv | ⊢ Ⅎ 𝑘 ≤ | |
| 13 | nfcv | ⊢ Ⅎ 𝑘 𝑗 | |
| 14 | 2 13 | nffv | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ 𝑗 ) |
| 15 | 11 12 14 | nfbr | ⊢ Ⅎ 𝑘 ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹 ‘ 𝑗 ) |
| 16 | 9 15 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 17 | eleq1w | ⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑍 ↔ 𝑗 ∈ 𝑍 ) ) | |
| 18 | 17 | anbi2d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ) ) |
| 19 | fvoveq1 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ ( 𝑘 + 1 ) ) = ( 𝐹 ‘ ( 𝑗 + 1 ) ) ) | |
| 20 | fveq2 | ⊢ ( 𝑘 = 𝑗 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑗 ) ) | |
| 21 | 19 20 | breq12d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 22 | 18 21 | imbi12d | ⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ≤ ( 𝐹 ‘ 𝑘 ) ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 23 | 16 22 6 | chvarfv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝑗 + 1 ) ) ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 24 | nfcv | ⊢ Ⅎ 𝑘 ℝ | |
| 25 | 8 | nfci | ⊢ Ⅎ 𝑘 𝑍 |
| 26 | nfcv | ⊢ Ⅎ 𝑘 𝑥 | |
| 27 | 26 12 14 | nfbr | ⊢ Ⅎ 𝑘 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) |
| 28 | 25 27 | nfralw | ⊢ Ⅎ 𝑘 ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) |
| 29 | 24 28 | nfrexw | ⊢ Ⅎ 𝑘 ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) |
| 30 | 1 29 | nfim | ⊢ Ⅎ 𝑘 ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 31 | nfv | ⊢ Ⅎ 𝑗 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) | |
| 32 | 20 | breq2d | ⊢ ( 𝑘 = 𝑗 → ( 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ↔ 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 33 | 31 27 32 | cbvralw | ⊢ ( ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 34 | 33 | a1i | ⊢ ( 𝑘 = 𝑗 → ( ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 35 | 34 | rexbidv | ⊢ ( 𝑘 = 𝑗 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
| 36 | 35 | imbi2d | ⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑘 ) ) ↔ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 37 | 30 36 7 | chvarfv | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 𝑥 ≤ ( 𝐹 ‘ 𝑗 ) ) |
| 38 | 3 4 5 23 37 | climinf | ⊢ ( 𝜑 → 𝐹 ⇝ inf ( ran 𝐹 , ℝ , < ) ) |