This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcn1.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climcn1.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climcn1.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | ||
| climcn1.4 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) | ||
| climcn1.5 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) | ||
| climcn1.6 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | ||
| climcn1.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) | ||
| climcn1.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝐵 ) | ||
| climcn1.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | ||
| Assertion | climcn1 | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐹 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcn1.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climcn1.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climcn1.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐵 ) | |
| 4 | climcn1.4 | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) | |
| 5 | climcn1.5 | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) | |
| 6 | climcn1.6 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | |
| 7 | climcn1.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) | |
| 8 | climcn1.8 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝐵 ) | |
| 9 | climcn1.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 11 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝑦 ∈ ℝ+ ) | |
| 12 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 13 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → 𝐺 ⇝ 𝐴 ) |
| 14 | 1 10 11 12 13 | climi2 | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
| 15 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 16 | 8 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝐵 ) |
| 17 | fvoveq1 | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑘 ) → ( abs ‘ ( 𝑧 − 𝐴 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ) | |
| 18 | 17 | breq1d | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑘 ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 19 | 18 | imbrov2fvoveq | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑘 ) → ( ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ↔ ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) ) |
| 20 | 19 | rspcva | ⊢ ( ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 21 | 16 20 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ 𝑘 ∈ 𝑍 ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 22 | 21 | an32s | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 23 | 15 22 | sylan2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 24 | 23 | anassrs | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 25 | 24 | ralimdva | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 26 | 25 | reximdva | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) ∧ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 27 | 26 | ex | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) ) |
| 28 | 14 27 | mpid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ+ ) → ( ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 29 | 28 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ 𝐵 ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 31 | 7 30 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) |
| 32 | 31 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) |
| 33 | fveq2 | ⊢ ( 𝑧 = 𝐴 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 34 | 33 | eleq1d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ↔ ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) ) |
| 35 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 36 | 34 35 3 | rspcdva | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 37 | fveq2 | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑘 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ) | |
| 38 | 37 | eleq1d | ⊢ ( 𝑧 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ↔ ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) ) |
| 39 | 35 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∀ 𝑧 ∈ 𝐵 ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 40 | 38 39 8 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) ∈ ℂ ) |
| 41 | 1 2 6 9 36 40 | clim2c | ⊢ ( 𝜑 → ( 𝐻 ⇝ ( 𝐹 ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑘 ) ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 42 | 32 41 | mpbird | ⊢ ( 𝜑 → 𝐻 ⇝ ( 𝐹 ‘ 𝐴 ) ) |