This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcn2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climcn2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climcn2.3a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | ||
| climcn2.3b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| climcn2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐶 ∧ 𝑣 ∈ 𝐷 ) ) → ( 𝑢 𝐹 𝑣 ) ∈ ℂ ) | ||
| climcn2.5a | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) | ||
| climcn2.5b | ⊢ ( 𝜑 → 𝐻 ⇝ 𝐵 ) | ||
| climcn2.6 | ⊢ ( 𝜑 → 𝐾 ∈ 𝑊 ) | ||
| climcn2.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) | ||
| climcn2.8a | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝐶 ) | ||
| climcn2.8b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝐷 ) | ||
| climcn2.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐾 ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) ) | ||
| Assertion | climcn2 | ⊢ ( 𝜑 → 𝐾 ⇝ ( 𝐴 𝐹 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcn2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climcn2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climcn2.3a | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 4 | climcn2.3b | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 5 | climcn2.4 | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝐶 ∧ 𝑣 ∈ 𝐷 ) ) → ( 𝑢 𝐹 𝑣 ) ∈ ℂ ) | |
| 6 | climcn2.5a | ⊢ ( 𝜑 → 𝐺 ⇝ 𝐴 ) | |
| 7 | climcn2.5b | ⊢ ( 𝜑 → 𝐻 ⇝ 𝐵 ) | |
| 8 | climcn2.6 | ⊢ ( 𝜑 → 𝐾 ∈ 𝑊 ) | |
| 9 | climcn2.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) | |
| 10 | climcn2.8a | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝐶 ) | |
| 11 | climcn2.8b | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝐷 ) | |
| 12 | climcn2.9 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐾 ‘ 𝑘 ) = ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) ) | |
| 13 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑀 ∈ ℤ ) |
| 14 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑦 ∈ ℝ+ ) | |
| 15 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 16 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝐺 ⇝ 𝐴 ) |
| 17 | 1 13 14 15 16 | climi2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) |
| 18 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝑧 ∈ ℝ+ ) | |
| 19 | eqidd | ⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑘 ) ) | |
| 20 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → 𝐻 ⇝ 𝐵 ) |
| 21 | 1 13 18 19 20 | climi2 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) |
| 22 | 1 | rexanuz2 | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) ↔ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) ) |
| 23 | 17 21 22 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) ) |
| 24 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 25 | fvoveq1 | ⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( abs ‘ ( 𝑢 − 𝐴 ) ) = ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) ) | |
| 26 | 25 | breq1d | ⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ↔ ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ) ) |
| 27 | 26 | anbi1d | ⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) ↔ ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) ) ) |
| 28 | oveq1 | ⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( 𝑢 𝐹 𝑣 ) = ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) ) | |
| 29 | 28 | fvoveq1d | ⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) = ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) ) |
| 30 | 29 | breq1d | ⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
| 31 | 27 30 | imbi12d | ⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ↔ ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ) |
| 32 | fvoveq1 | ⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( abs ‘ ( 𝑣 − 𝐵 ) ) = ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) ) | |
| 33 | 32 | breq1d | ⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ↔ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) ) |
| 34 | 33 | anbi2d | ⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) ↔ ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) ) ) |
| 35 | oveq2 | ⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) = ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) ) | |
| 36 | 35 | fvoveq1d | ⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) = ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) ) |
| 37 | 36 | breq1d | ⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
| 38 | 34 37 | imbi12d | ⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ↔ ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ) |
| 39 | 31 38 | rspc2v | ⊢ ( ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐶 ∧ ( 𝐻 ‘ 𝑘 ) ∈ 𝐷 ) → ( ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ) |
| 40 | 10 11 39 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ) |
| 41 | 40 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
| 42 | 41 | an32s | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
| 43 | 24 42 | sylan2 | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
| 44 | 43 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
| 45 | 44 | ralimdva | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
| 46 | 45 | reximdva | ⊢ ( ( 𝜑 ∧ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
| 47 | 46 | ex | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( abs ‘ ( ( 𝐺 ‘ 𝑘 ) − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( ( 𝐻 ‘ 𝑘 ) − 𝐵 ) ) < 𝑧 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) ) |
| 49 | 23 48 | mpid | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ ℝ+ ∧ 𝑧 ∈ ℝ+ ) ) → ( ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
| 50 | 49 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ ℝ+ ∃ 𝑧 ∈ ℝ+ ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( ( ( abs ‘ ( 𝑢 − 𝐴 ) ) < 𝑦 ∧ ( abs ‘ ( 𝑣 − 𝐵 ) ) < 𝑧 ) → ( abs ‘ ( ( 𝑢 𝐹 𝑣 ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
| 52 | 9 51 | mpd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) |
| 53 | 52 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) |
| 54 | 5 3 4 | caovcld | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ ℂ ) |
| 55 | 10 11 | jca | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐶 ∧ ( 𝐻 ‘ 𝑘 ) ∈ 𝐷 ) ) |
| 56 | 5 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( 𝑢 𝐹 𝑣 ) ∈ ℂ ) |
| 57 | 56 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( 𝑢 𝐹 𝑣 ) ∈ ℂ ) |
| 58 | 28 | eleq1d | ⊢ ( 𝑢 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝑢 𝐹 𝑣 ) ∈ ℂ ↔ ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) ∈ ℂ ) ) |
| 59 | 35 | eleq1d | ⊢ ( 𝑣 = ( 𝐻 ‘ 𝑘 ) → ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 𝑣 ) ∈ ℂ ↔ ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) ∈ ℂ ) ) |
| 60 | 58 59 | rspc2v | ⊢ ( ( ( 𝐺 ‘ 𝑘 ) ∈ 𝐶 ∧ ( 𝐻 ‘ 𝑘 ) ∈ 𝐷 ) → ( ∀ 𝑢 ∈ 𝐶 ∀ 𝑣 ∈ 𝐷 ( 𝑢 𝐹 𝑣 ) ∈ ℂ → ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) ∈ ℂ ) ) |
| 61 | 55 57 60 | sylc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) ∈ ℂ ) |
| 62 | 1 2 8 12 54 61 | clim2c | ⊢ ( 𝜑 → ( 𝐾 ⇝ ( 𝐴 𝐹 𝐵 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ( ( 𝐺 ‘ 𝑘 ) 𝐹 ( 𝐻 ‘ 𝑘 ) ) − ( 𝐴 𝐹 𝐵 ) ) ) < 𝑥 ) ) |
| 63 | 53 62 | mpbird | ⊢ ( 𝜑 → 𝐾 ⇝ ( 𝐴 𝐹 𝐵 ) ) |