This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovclg.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝐸 ) | |
| caovcld.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | ||
| caovcld.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | ||
| Assertion | caovcld | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝐸 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovclg.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ) → ( 𝑥 𝐹 𝑦 ) ∈ 𝐸 ) | |
| 2 | caovcld.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝐶 ) | |
| 3 | caovcld.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) | |
| 4 | id | ⊢ ( 𝜑 → 𝜑 ) | |
| 5 | 1 | caovclg | ⊢ ( ( 𝜑 ∧ ( 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ) ) → ( 𝐴 𝐹 𝐵 ) ∈ 𝐸 ) |
| 6 | 4 2 3 5 | syl12anc | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝐸 ) |