This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcn2.1 | |- Z = ( ZZ>= ` M ) |
|
| climcn2.2 | |- ( ph -> M e. ZZ ) |
||
| climcn2.3a | |- ( ph -> A e. C ) |
||
| climcn2.3b | |- ( ph -> B e. D ) |
||
| climcn2.4 | |- ( ( ph /\ ( u e. C /\ v e. D ) ) -> ( u F v ) e. CC ) |
||
| climcn2.5a | |- ( ph -> G ~~> A ) |
||
| climcn2.5b | |- ( ph -> H ~~> B ) |
||
| climcn2.6 | |- ( ph -> K e. W ) |
||
| climcn2.7 | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ E. z e. RR+ A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) ) |
||
| climcn2.8a | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. C ) |
||
| climcn2.8b | |- ( ( ph /\ k e. Z ) -> ( H ` k ) e. D ) |
||
| climcn2.9 | |- ( ( ph /\ k e. Z ) -> ( K ` k ) = ( ( G ` k ) F ( H ` k ) ) ) |
||
| Assertion | climcn2 | |- ( ph -> K ~~> ( A F B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcn2.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climcn2.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climcn2.3a | |- ( ph -> A e. C ) |
|
| 4 | climcn2.3b | |- ( ph -> B e. D ) |
|
| 5 | climcn2.4 | |- ( ( ph /\ ( u e. C /\ v e. D ) ) -> ( u F v ) e. CC ) |
|
| 6 | climcn2.5a | |- ( ph -> G ~~> A ) |
|
| 7 | climcn2.5b | |- ( ph -> H ~~> B ) |
|
| 8 | climcn2.6 | |- ( ph -> K e. W ) |
|
| 9 | climcn2.7 | |- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ E. z e. RR+ A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) ) |
|
| 10 | climcn2.8a | |- ( ( ph /\ k e. Z ) -> ( G ` k ) e. C ) |
|
| 11 | climcn2.8b | |- ( ( ph /\ k e. Z ) -> ( H ` k ) e. D ) |
|
| 12 | climcn2.9 | |- ( ( ph /\ k e. Z ) -> ( K ` k ) = ( ( G ` k ) F ( H ` k ) ) ) |
|
| 13 | 2 | adantr | |- ( ( ph /\ ( y e. RR+ /\ z e. RR+ ) ) -> M e. ZZ ) |
| 14 | simprl | |- ( ( ph /\ ( y e. RR+ /\ z e. RR+ ) ) -> y e. RR+ ) |
|
| 15 | eqidd | |- ( ( ( ph /\ ( y e. RR+ /\ z e. RR+ ) ) /\ k e. Z ) -> ( G ` k ) = ( G ` k ) ) |
|
| 16 | 6 | adantr | |- ( ( ph /\ ( y e. RR+ /\ z e. RR+ ) ) -> G ~~> A ) |
| 17 | 1 13 14 15 16 | climi2 | |- ( ( ph /\ ( y e. RR+ /\ z e. RR+ ) ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < y ) |
| 18 | simprr | |- ( ( ph /\ ( y e. RR+ /\ z e. RR+ ) ) -> z e. RR+ ) |
|
| 19 | eqidd | |- ( ( ( ph /\ ( y e. RR+ /\ z e. RR+ ) ) /\ k e. Z ) -> ( H ` k ) = ( H ` k ) ) |
|
| 20 | 7 | adantr | |- ( ( ph /\ ( y e. RR+ /\ z e. RR+ ) ) -> H ~~> B ) |
| 21 | 1 13 18 19 20 | climi2 | |- ( ( ph /\ ( y e. RR+ /\ z e. RR+ ) ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( H ` k ) - B ) ) < z ) |
| 22 | 1 | rexanuz2 | |- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) <-> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( G ` k ) - A ) ) < y /\ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( H ` k ) - B ) ) < z ) ) |
| 23 | 17 21 22 | sylanbrc | |- ( ( ph /\ ( y e. RR+ /\ z e. RR+ ) ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) ) |
| 24 | 1 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 25 | fvoveq1 | |- ( u = ( G ` k ) -> ( abs ` ( u - A ) ) = ( abs ` ( ( G ` k ) - A ) ) ) |
|
| 26 | 25 | breq1d | |- ( u = ( G ` k ) -> ( ( abs ` ( u - A ) ) < y <-> ( abs ` ( ( G ` k ) - A ) ) < y ) ) |
| 27 | 26 | anbi1d | |- ( u = ( G ` k ) -> ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) <-> ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) ) ) |
| 28 | oveq1 | |- ( u = ( G ` k ) -> ( u F v ) = ( ( G ` k ) F v ) ) |
|
| 29 | 28 | fvoveq1d | |- ( u = ( G ` k ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) = ( abs ` ( ( ( G ` k ) F v ) - ( A F B ) ) ) ) |
| 30 | 29 | breq1d | |- ( u = ( G ` k ) -> ( ( abs ` ( ( u F v ) - ( A F B ) ) ) < x <-> ( abs ` ( ( ( G ` k ) F v ) - ( A F B ) ) ) < x ) ) |
| 31 | 27 30 | imbi12d | |- ( u = ( G ` k ) -> ( ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) <-> ( ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( ( G ` k ) F v ) - ( A F B ) ) ) < x ) ) ) |
| 32 | fvoveq1 | |- ( v = ( H ` k ) -> ( abs ` ( v - B ) ) = ( abs ` ( ( H ` k ) - B ) ) ) |
|
| 33 | 32 | breq1d | |- ( v = ( H ` k ) -> ( ( abs ` ( v - B ) ) < z <-> ( abs ` ( ( H ` k ) - B ) ) < z ) ) |
| 34 | 33 | anbi2d | |- ( v = ( H ` k ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) <-> ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) ) ) |
| 35 | oveq2 | |- ( v = ( H ` k ) -> ( ( G ` k ) F v ) = ( ( G ` k ) F ( H ` k ) ) ) |
|
| 36 | 35 | fvoveq1d | |- ( v = ( H ` k ) -> ( abs ` ( ( ( G ` k ) F v ) - ( A F B ) ) ) = ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) ) |
| 37 | 36 | breq1d | |- ( v = ( H ` k ) -> ( ( abs ` ( ( ( G ` k ) F v ) - ( A F B ) ) ) < x <-> ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) |
| 38 | 34 37 | imbi12d | |- ( v = ( H ` k ) -> ( ( ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( ( G ` k ) F v ) - ( A F B ) ) ) < x ) <-> ( ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) -> ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) ) |
| 39 | 31 38 | rspc2v | |- ( ( ( G ` k ) e. C /\ ( H ` k ) e. D ) -> ( A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) -> ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) ) |
| 40 | 10 11 39 | syl2anc | |- ( ( ph /\ k e. Z ) -> ( A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) -> ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) ) |
| 41 | 40 | imp | |- ( ( ( ph /\ k e. Z ) /\ A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) -> ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) |
| 42 | 41 | an32s | |- ( ( ( ph /\ A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) ) /\ k e. Z ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) -> ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) |
| 43 | 24 42 | sylan2 | |- ( ( ( ph /\ A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) ) /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) -> ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) |
| 44 | 43 | anassrs | |- ( ( ( ( ph /\ A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) ) /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) -> ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) |
| 45 | 44 | ralimdva | |- ( ( ( ph /\ A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) ) /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) |
| 46 | 45 | reximdva | |- ( ( ph /\ A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) |
| 47 | 46 | ex | |- ( ph -> ( A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) ) |
| 48 | 47 | adantr | |- ( ( ph /\ ( y e. RR+ /\ z e. RR+ ) ) -> ( A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( ( abs ` ( ( G ` k ) - A ) ) < y /\ ( abs ` ( ( H ` k ) - B ) ) < z ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) ) |
| 49 | 23 48 | mpid | |- ( ( ph /\ ( y e. RR+ /\ z e. RR+ ) ) -> ( A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) |
| 50 | 49 | rexlimdvva | |- ( ph -> ( E. y e. RR+ E. z e. RR+ A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) |
| 51 | 50 | adantr | |- ( ( ph /\ x e. RR+ ) -> ( E. y e. RR+ E. z e. RR+ A. u e. C A. v e. D ( ( ( abs ` ( u - A ) ) < y /\ ( abs ` ( v - B ) ) < z ) -> ( abs ` ( ( u F v ) - ( A F B ) ) ) < x ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) |
| 52 | 9 51 | mpd | |- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) |
| 53 | 52 | ralrimiva | |- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) |
| 54 | 5 3 4 | caovcld | |- ( ph -> ( A F B ) e. CC ) |
| 55 | 10 11 | jca | |- ( ( ph /\ k e. Z ) -> ( ( G ` k ) e. C /\ ( H ` k ) e. D ) ) |
| 56 | 5 | ralrimivva | |- ( ph -> A. u e. C A. v e. D ( u F v ) e. CC ) |
| 57 | 56 | adantr | |- ( ( ph /\ k e. Z ) -> A. u e. C A. v e. D ( u F v ) e. CC ) |
| 58 | 28 | eleq1d | |- ( u = ( G ` k ) -> ( ( u F v ) e. CC <-> ( ( G ` k ) F v ) e. CC ) ) |
| 59 | 35 | eleq1d | |- ( v = ( H ` k ) -> ( ( ( G ` k ) F v ) e. CC <-> ( ( G ` k ) F ( H ` k ) ) e. CC ) ) |
| 60 | 58 59 | rspc2v | |- ( ( ( G ` k ) e. C /\ ( H ` k ) e. D ) -> ( A. u e. C A. v e. D ( u F v ) e. CC -> ( ( G ` k ) F ( H ` k ) ) e. CC ) ) |
| 61 | 55 57 60 | sylc | |- ( ( ph /\ k e. Z ) -> ( ( G ` k ) F ( H ` k ) ) e. CC ) |
| 62 | 1 2 8 12 54 61 | clim2c | |- ( ph -> ( K ~~> ( A F B ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( G ` k ) F ( H ` k ) ) - ( A F B ) ) ) < x ) ) |
| 63 | 53 62 | mpbird | |- ( ph -> K ~~> ( A F B ) ) |