This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjcn2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjf | ⊢ ∗ : ℂ ⟶ ℂ | |
| 2 | cjcl | ⊢ ( 𝑧 ∈ ℂ → ( ∗ ‘ 𝑧 ) ∈ ℂ ) | |
| 3 | cjcl | ⊢ ( 𝐴 ∈ ℂ → ( ∗ ‘ 𝐴 ) ∈ ℂ ) | |
| 4 | subcl | ⊢ ( ( ( ∗ ‘ 𝑧 ) ∈ ℂ ∧ ( ∗ ‘ 𝐴 ) ∈ ℂ ) → ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) | |
| 5 | 2 3 4 | syl2an | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ∈ ℂ ) |
| 6 | 5 | abscld | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 7 | cjsub | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ∗ ‘ ( 𝑧 − 𝐴 ) ) = ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) | |
| 8 | 7 | fveq2d | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ∗ ‘ ( 𝑧 − 𝐴 ) ) ) = ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) ) |
| 9 | subcl | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑧 − 𝐴 ) ∈ ℂ ) | |
| 10 | 9 | abscjd | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ∗ ‘ ( 𝑧 − 𝐴 ) ) ) = ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
| 11 | 8 10 | eqtr3d | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) = ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
| 12 | 6 11 | eqled | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
| 13 | 1 12 | cn1lem | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( ∗ ‘ 𝑧 ) − ( ∗ ‘ 𝐴 ) ) ) < 𝑥 ) ) |