This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjcn2 | |- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( * ` z ) - ( * ` A ) ) ) < x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjf | |- * : CC --> CC |
|
| 2 | cjcl | |- ( z e. CC -> ( * ` z ) e. CC ) |
|
| 3 | cjcl | |- ( A e. CC -> ( * ` A ) e. CC ) |
|
| 4 | subcl | |- ( ( ( * ` z ) e. CC /\ ( * ` A ) e. CC ) -> ( ( * ` z ) - ( * ` A ) ) e. CC ) |
|
| 5 | 2 3 4 | syl2an | |- ( ( z e. CC /\ A e. CC ) -> ( ( * ` z ) - ( * ` A ) ) e. CC ) |
| 6 | 5 | abscld | |- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( * ` z ) - ( * ` A ) ) ) e. RR ) |
| 7 | cjsub | |- ( ( z e. CC /\ A e. CC ) -> ( * ` ( z - A ) ) = ( ( * ` z ) - ( * ` A ) ) ) |
|
| 8 | 7 | fveq2d | |- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( * ` ( z - A ) ) ) = ( abs ` ( ( * ` z ) - ( * ` A ) ) ) ) |
| 9 | subcl | |- ( ( z e. CC /\ A e. CC ) -> ( z - A ) e. CC ) |
|
| 10 | 9 | abscjd | |- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( * ` ( z - A ) ) ) = ( abs ` ( z - A ) ) ) |
| 11 | 8 10 | eqtr3d | |- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( * ` z ) - ( * ` A ) ) ) = ( abs ` ( z - A ) ) ) |
| 12 | 6 11 | eqled | |- ( ( z e. CC /\ A e. CC ) -> ( abs ` ( ( * ` z ) - ( * ` A ) ) ) <_ ( abs ` ( z - A ) ) ) |
| 13 | 1 12 | cn1lem | |- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( * ` z ) - ( * ` A ) ) ) < x ) ) |