This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cn1lem.1 | ⊢ 𝐹 : ℂ ⟶ ℂ | |
| cn1lem.2 | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ) | ||
| Assertion | cn1lem | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cn1lem.1 | ⊢ 𝐹 : ℂ ⟶ ℂ | |
| 2 | cn1lem.2 | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ) | |
| 3 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) | |
| 4 | simpr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → 𝑧 ∈ ℂ ) | |
| 5 | simpll | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 6 | 4 5 2 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
| 7 | 1 | ffvelcdmi | ⊢ ( 𝑧 ∈ ℂ → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 8 | 4 7 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 9 | 1 | ffvelcdmi | ⊢ ( 𝐴 ∈ ℂ → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 10 | 5 9 | syl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( 𝐹 ‘ 𝐴 ) ∈ ℂ ) |
| 11 | 8 10 | subcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ∈ ℂ ) |
| 12 | 11 | abscld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 13 | 4 5 | subcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( 𝑧 − 𝐴 ) ∈ ℂ ) |
| 14 | 13 | abscld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( abs ‘ ( 𝑧 − 𝐴 ) ) ∈ ℝ ) |
| 15 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → 𝑥 ∈ ℝ ) |
| 17 | lelttr | ⊢ ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ∈ ℝ ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) | |
| 18 | 12 14 16 17 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( ( ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ∧ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 19 | 6 18 | mpand | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑧 ∈ ℂ ) → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 20 | 19 | ralrimiva | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 21 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 ↔ ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑥 ) ) | |
| 22 | 21 | rspceaimv | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑥 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| 23 | 3 20 22 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( 𝐹 ‘ 𝑧 ) − ( 𝐹 ‘ 𝐴 ) ) ) < 𝑥 ) ) |