This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | recn2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝐴 ) ) ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 2 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 3 | fss | ⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ℜ : ℂ ⟶ ℂ ) | |
| 4 | 1 2 3 | mp2an | ⊢ ℜ : ℂ ⟶ ℂ |
| 5 | resub | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ℜ ‘ ( 𝑧 − 𝐴 ) ) = ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝐴 ) ) ) | |
| 6 | 5 | fveq2d | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ℜ ‘ ( 𝑧 − 𝐴 ) ) ) = ( abs ‘ ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝐴 ) ) ) ) |
| 7 | subcl | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( 𝑧 − 𝐴 ) ∈ ℂ ) | |
| 8 | absrele | ⊢ ( ( 𝑧 − 𝐴 ) ∈ ℂ → ( abs ‘ ( ℜ ‘ ( 𝑧 − 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ℜ ‘ ( 𝑧 − 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
| 10 | 6 9 | eqbrtrrd | ⊢ ( ( 𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( abs ‘ ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝐴 ) ) ) ≤ ( abs ‘ ( 𝑧 − 𝐴 ) ) ) |
| 11 | 4 10 | cn1lem | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ+ ∀ 𝑧 ∈ ℂ ( ( abs ‘ ( 𝑧 − 𝐴 ) ) < 𝑦 → ( abs ‘ ( ( ℜ ‘ 𝑧 ) − ( ℜ ‘ 𝐴 ) ) ) < 𝑥 ) ) |