This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cidfval.b | |- B = ( Base ` C ) |
|
| cidfval.h | |- H = ( Hom ` C ) |
||
| cidfval.o | |- .x. = ( comp ` C ) |
||
| cidfval.c | |- ( ph -> C e. Cat ) |
||
| cidfval.i | |- .1. = ( Id ` C ) |
||
| cidval.x | |- ( ph -> X e. B ) |
||
| Assertion | cidval | |- ( ph -> ( .1. ` X ) = ( iota_ g e. ( X H X ) A. y e. B ( A. f e. ( y H X ) ( g ( <. y , X >. .x. X ) f ) = f /\ A. f e. ( X H y ) ( f ( <. X , X >. .x. y ) g ) = f ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cidfval.b | |- B = ( Base ` C ) |
|
| 2 | cidfval.h | |- H = ( Hom ` C ) |
|
| 3 | cidfval.o | |- .x. = ( comp ` C ) |
|
| 4 | cidfval.c | |- ( ph -> C e. Cat ) |
|
| 5 | cidfval.i | |- .1. = ( Id ` C ) |
|
| 6 | cidval.x | |- ( ph -> X e. B ) |
|
| 7 | 1 2 3 4 5 | cidfval | |- ( ph -> .1. = ( x e. B |-> ( iota_ g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) ) ) ) |
| 8 | simpr | |- ( ( ph /\ x = X ) -> x = X ) |
|
| 9 | 8 8 | oveq12d | |- ( ( ph /\ x = X ) -> ( x H x ) = ( X H X ) ) |
| 10 | 8 | oveq2d | |- ( ( ph /\ x = X ) -> ( y H x ) = ( y H X ) ) |
| 11 | 8 | opeq2d | |- ( ( ph /\ x = X ) -> <. y , x >. = <. y , X >. ) |
| 12 | 11 8 | oveq12d | |- ( ( ph /\ x = X ) -> ( <. y , x >. .x. x ) = ( <. y , X >. .x. X ) ) |
| 13 | 12 | oveqd | |- ( ( ph /\ x = X ) -> ( g ( <. y , x >. .x. x ) f ) = ( g ( <. y , X >. .x. X ) f ) ) |
| 14 | 13 | eqeq1d | |- ( ( ph /\ x = X ) -> ( ( g ( <. y , x >. .x. x ) f ) = f <-> ( g ( <. y , X >. .x. X ) f ) = f ) ) |
| 15 | 10 14 | raleqbidv | |- ( ( ph /\ x = X ) -> ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f <-> A. f e. ( y H X ) ( g ( <. y , X >. .x. X ) f ) = f ) ) |
| 16 | 8 | oveq1d | |- ( ( ph /\ x = X ) -> ( x H y ) = ( X H y ) ) |
| 17 | 8 8 | opeq12d | |- ( ( ph /\ x = X ) -> <. x , x >. = <. X , X >. ) |
| 18 | 17 | oveq1d | |- ( ( ph /\ x = X ) -> ( <. x , x >. .x. y ) = ( <. X , X >. .x. y ) ) |
| 19 | 18 | oveqd | |- ( ( ph /\ x = X ) -> ( f ( <. x , x >. .x. y ) g ) = ( f ( <. X , X >. .x. y ) g ) ) |
| 20 | 19 | eqeq1d | |- ( ( ph /\ x = X ) -> ( ( f ( <. x , x >. .x. y ) g ) = f <-> ( f ( <. X , X >. .x. y ) g ) = f ) ) |
| 21 | 16 20 | raleqbidv | |- ( ( ph /\ x = X ) -> ( A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f <-> A. f e. ( X H y ) ( f ( <. X , X >. .x. y ) g ) = f ) ) |
| 22 | 15 21 | anbi12d | |- ( ( ph /\ x = X ) -> ( ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) <-> ( A. f e. ( y H X ) ( g ( <. y , X >. .x. X ) f ) = f /\ A. f e. ( X H y ) ( f ( <. X , X >. .x. y ) g ) = f ) ) ) |
| 23 | 22 | ralbidv | |- ( ( ph /\ x = X ) -> ( A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) <-> A. y e. B ( A. f e. ( y H X ) ( g ( <. y , X >. .x. X ) f ) = f /\ A. f e. ( X H y ) ( f ( <. X , X >. .x. y ) g ) = f ) ) ) |
| 24 | 9 23 | riotaeqbidv | |- ( ( ph /\ x = X ) -> ( iota_ g e. ( x H x ) A. y e. B ( A. f e. ( y H x ) ( g ( <. y , x >. .x. x ) f ) = f /\ A. f e. ( x H y ) ( f ( <. x , x >. .x. y ) g ) = f ) ) = ( iota_ g e. ( X H X ) A. y e. B ( A. f e. ( y H X ) ( g ( <. y , X >. .x. X ) f ) = f /\ A. f e. ( X H y ) ( f ( <. X , X >. .x. y ) g ) = f ) ) ) |
| 25 | riotaex | |- ( iota_ g e. ( X H X ) A. y e. B ( A. f e. ( y H X ) ( g ( <. y , X >. .x. X ) f ) = f /\ A. f e. ( X H y ) ( f ( <. X , X >. .x. y ) g ) = f ) ) e. _V |
|
| 26 | 25 | a1i | |- ( ph -> ( iota_ g e. ( X H X ) A. y e. B ( A. f e. ( y H X ) ( g ( <. y , X >. .x. X ) f ) = f /\ A. f e. ( X H y ) ( f ( <. X , X >. .x. y ) g ) = f ) ) e. _V ) |
| 27 | 7 24 6 26 | fvmptd | |- ( ph -> ( .1. ` X ) = ( iota_ g e. ( X H X ) A. y e. B ( A. f e. ( y H X ) ( g ( <. y , X >. .x. X ) f ) = f /\ A. f e. ( X H y ) ( f ( <. X , X >. .x. y ) g ) = f ) ) ) |