This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in Adamek p. 29. (Contributed by AV, 5-Apr-2020) (Proof shortened by Zhi Wang, 3-Nov-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cicerALT | ⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) Er ( Base ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcic | ⊢ ( 𝐶 ∈ Cat → Rel ( ≃𝑐 ‘ 𝐶 ) ) | |
| 2 | cicsym | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ) → 𝑦 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) | |
| 3 | cictr | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) → 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) | |
| 4 | 3 | 3expb | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑦 ∧ 𝑦 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) ) → 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑧 ) |
| 5 | cicref | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) | |
| 6 | ciclcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 7 | 5 6 | impbida | ⊢ ( 𝐶 ∈ Cat → ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↔ 𝑥 ( ≃𝑐 ‘ 𝐶 ) 𝑥 ) ) |
| 8 | 1 2 4 7 | iserd | ⊢ ( 𝐶 ∈ Cat → ( ≃𝑐 ‘ 𝐶 ) Er ( Base ‘ 𝐶 ) ) |