This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in Adamek p. 29. (Contributed by AV, 5-Apr-2020) (Proof shortened by Zhi Wang, 3-Nov-2025) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cicerALT | |- ( C e. Cat -> ( ~=c ` C ) Er ( Base ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcic | |- ( C e. Cat -> Rel ( ~=c ` C ) ) |
|
| 2 | cicsym | |- ( ( C e. Cat /\ x ( ~=c ` C ) y ) -> y ( ~=c ` C ) x ) |
|
| 3 | cictr | |- ( ( C e. Cat /\ x ( ~=c ` C ) y /\ y ( ~=c ` C ) z ) -> x ( ~=c ` C ) z ) |
|
| 4 | 3 | 3expb | |- ( ( C e. Cat /\ ( x ( ~=c ` C ) y /\ y ( ~=c ` C ) z ) ) -> x ( ~=c ` C ) z ) |
| 5 | cicref | |- ( ( C e. Cat /\ x e. ( Base ` C ) ) -> x ( ~=c ` C ) x ) |
|
| 6 | ciclcl | |- ( ( C e. Cat /\ x ( ~=c ` C ) x ) -> x e. ( Base ` C ) ) |
|
| 7 | 5 6 | impbida | |- ( C e. Cat -> ( x e. ( Base ` C ) <-> x ( ~=c ` C ) x ) ) |
| 8 | 1 2 4 7 | iserd | |- ( C e. Cat -> ( ~=c ` C ) Er ( Base ` C ) ) |