This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ortholattice is distributive in one ordering direction. (Contributed by NM, 6-Aug-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ledi.1 | ⊢ 𝐴 ∈ Cℋ | |
| ledi.2 | ⊢ 𝐵 ∈ Cℋ | ||
| ledi.3 | ⊢ 𝐶 ∈ Cℋ | ||
| Assertion | ledii | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ledi.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | ledi.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | ledi.3 | ⊢ 𝐶 ∈ Cℋ | |
| 4 | inss1 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 | |
| 5 | inss1 | ⊢ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 | |
| 6 | 1 2 | chincli | ⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 7 | 1 3 | chincli | ⊢ ( 𝐴 ∩ 𝐶 ) ∈ Cℋ |
| 8 | 6 7 1 | chlubii | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 ∧ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐴 ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ 𝐴 ) |
| 9 | 4 5 8 | mp2an | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ 𝐴 |
| 10 | inss2 | ⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 | |
| 11 | inss2 | ⊢ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 | |
| 12 | 6 2 7 3 | chlej12i | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ∧ ( 𝐴 ∩ 𝐶 ) ⊆ 𝐶 ) → ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) ) |
| 13 | 10 11 12 | mp2an | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐵 ∨ℋ 𝐶 ) |
| 14 | 9 13 | ssini | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ 𝐶 ) ) ⊆ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐶 ) ) |