This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of the join of 4 Hilbert lattice elements. (Contributed by NM, 15-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chj4 | |- ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( ( A vH B ) vH ( C vH D ) ) = ( ( A vH C ) vH ( B vH D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chj12 | |- ( ( B e. CH /\ C e. CH /\ D e. CH ) -> ( B vH ( C vH D ) ) = ( C vH ( B vH D ) ) ) |
|
| 2 | 1 | 3expb | |- ( ( B e. CH /\ ( C e. CH /\ D e. CH ) ) -> ( B vH ( C vH D ) ) = ( C vH ( B vH D ) ) ) |
| 3 | 2 | adantll | |- ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( B vH ( C vH D ) ) = ( C vH ( B vH D ) ) ) |
| 4 | 3 | oveq2d | |- ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( A vH ( B vH ( C vH D ) ) ) = ( A vH ( C vH ( B vH D ) ) ) ) |
| 5 | chjcl | |- ( ( C e. CH /\ D e. CH ) -> ( C vH D ) e. CH ) |
|
| 6 | chjass | |- ( ( A e. CH /\ B e. CH /\ ( C vH D ) e. CH ) -> ( ( A vH B ) vH ( C vH D ) ) = ( A vH ( B vH ( C vH D ) ) ) ) |
|
| 7 | 6 | 3expa | |- ( ( ( A e. CH /\ B e. CH ) /\ ( C vH D ) e. CH ) -> ( ( A vH B ) vH ( C vH D ) ) = ( A vH ( B vH ( C vH D ) ) ) ) |
| 8 | 5 7 | sylan2 | |- ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( ( A vH B ) vH ( C vH D ) ) = ( A vH ( B vH ( C vH D ) ) ) ) |
| 9 | chjcl | |- ( ( B e. CH /\ D e. CH ) -> ( B vH D ) e. CH ) |
|
| 10 | chjass | |- ( ( A e. CH /\ C e. CH /\ ( B vH D ) e. CH ) -> ( ( A vH C ) vH ( B vH D ) ) = ( A vH ( C vH ( B vH D ) ) ) ) |
|
| 11 | 10 | 3expa | |- ( ( ( A e. CH /\ C e. CH ) /\ ( B vH D ) e. CH ) -> ( ( A vH C ) vH ( B vH D ) ) = ( A vH ( C vH ( B vH D ) ) ) ) |
| 12 | 9 11 | sylan2 | |- ( ( ( A e. CH /\ C e. CH ) /\ ( B e. CH /\ D e. CH ) ) -> ( ( A vH C ) vH ( B vH D ) ) = ( A vH ( C vH ( B vH D ) ) ) ) |
| 13 | 12 | an4s | |- ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( ( A vH C ) vH ( B vH D ) ) = ( A vH ( C vH ( B vH D ) ) ) ) |
| 14 | 4 8 13 | 3eqtr4d | |- ( ( ( A e. CH /\ B e. CH ) /\ ( C e. CH /\ D e. CH ) ) -> ( ( A vH B ) vH ( C vH D ) ) = ( ( A vH C ) vH ( B vH D ) ) ) |