This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter finer than a Cauchy filter is Cauchy. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfilss | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → 𝐺 ∈ ( CauFil ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → 𝐺 ∈ ( Fil ‘ 𝑋 ) ) | |
| 2 | simprr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → 𝐹 ⊆ 𝐺 ) | |
| 3 | iscfil | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) | |
| 4 | 3 | simplbda | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
| 5 | 4 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
| 6 | ssrexv | ⊢ ( 𝐹 ⊆ 𝐺 → ( ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) → ∃ 𝑦 ∈ 𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) | |
| 7 | 6 | ralimdv | ⊢ ( 𝐹 ⊆ 𝐺 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) |
| 8 | 2 5 7 | sylc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) |
| 9 | iscfil | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐺 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) | |
| 10 | 9 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → ( 𝐺 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐺 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
| 11 | 1 8 10 | mpbir2and | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ ( 𝐺 ∈ ( Fil ‘ 𝑋 ) ∧ 𝐹 ⊆ 𝐺 ) ) → 𝐺 ∈ ( CauFil ‘ 𝐷 ) ) |