This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the cofinality function. Definition B of Saharon Shelah, Cardinal Arithmetic (1994), p. xxx (Roman numeral 30). See cfval for its value and a description. (Contributed by NM, 1-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cf | ⊢ cf = ( 𝑥 ∈ On ↦ ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccf | ⊢ cf | |
| 1 | vx | ⊢ 𝑥 | |
| 2 | con0 | ⊢ On | |
| 3 | vy | ⊢ 𝑦 | |
| 4 | vz | ⊢ 𝑧 | |
| 5 | 3 | cv | ⊢ 𝑦 |
| 6 | ccrd | ⊢ card | |
| 7 | 4 | cv | ⊢ 𝑧 |
| 8 | 7 6 | cfv | ⊢ ( card ‘ 𝑧 ) |
| 9 | 5 8 | wceq | ⊢ 𝑦 = ( card ‘ 𝑧 ) |
| 10 | 1 | cv | ⊢ 𝑥 |
| 11 | 7 10 | wss | ⊢ 𝑧 ⊆ 𝑥 |
| 12 | vv | ⊢ 𝑣 | |
| 13 | vu | ⊢ 𝑢 | |
| 14 | 12 | cv | ⊢ 𝑣 |
| 15 | 13 | cv | ⊢ 𝑢 |
| 16 | 14 15 | wss | ⊢ 𝑣 ⊆ 𝑢 |
| 17 | 16 13 7 | wrex | ⊢ ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 |
| 18 | 17 12 10 | wral | ⊢ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 |
| 19 | 11 18 | wa | ⊢ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) |
| 20 | 9 19 | wa | ⊢ ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) |
| 21 | 20 4 | wex | ⊢ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) |
| 22 | 21 3 | cab | ⊢ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } |
| 23 | 22 | cint | ⊢ ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } |
| 24 | 1 2 23 | cmpt | ⊢ ( 𝑥 ∈ On ↦ ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } ) |
| 25 | 0 24 | wceq | ⊢ cf = ( 𝑥 ∈ On ↦ ∩ { 𝑦 ∣ ∃ 𝑧 ( 𝑦 = ( card ‘ 𝑧 ) ∧ ( 𝑧 ⊆ 𝑥 ∧ ∀ 𝑣 ∈ 𝑥 ∃ 𝑢 ∈ 𝑧 𝑣 ⊆ 𝑢 ) ) } ) |