This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of ceqsalt . (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 10-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ceqsralt | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimt | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 3 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝐵 ↔ 𝐴 ∈ 𝐵 ) ) | |
| 4 | 3 | pm5.32ri | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ↔ ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) ) |
| 5 | 4 | imbi1i | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) → 𝜑 ) ↔ ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) → 𝜑 ) ) |
| 6 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) → 𝜑 ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 7 | impexp | ⊢ ( ( ( 𝐴 ∈ 𝐵 ∧ 𝑥 = 𝐴 ) → 𝜑 ) ↔ ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 8 | 5 6 7 | 3bitr3i | ⊢ ( ( 𝑥 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 9 | 8 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ∀ 𝑥 ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 10 | 19.21v | ⊢ ( ∀ 𝑥 ( 𝐴 ∈ 𝐵 → ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ( 𝐴 ∈ 𝐵 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 11 | 2 9 10 | 3bitrri | ⊢ ( ( 𝐴 ∈ 𝐵 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 12 | 1 11 | bitrdi | ⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 14 | ceqsalt | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) | |
| 15 | 13 14 | bitr3d | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |