This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of ceqsalt . (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 10-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ceqsralt | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A. x e. B ( x = A -> ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimt | |- ( A e. B -> ( A. x ( x = A -> ph ) <-> ( A e. B -> A. x ( x = A -> ph ) ) ) ) |
|
| 2 | df-ral | |- ( A. x e. B ( x = A -> ph ) <-> A. x ( x e. B -> ( x = A -> ph ) ) ) |
|
| 3 | eleq1 | |- ( x = A -> ( x e. B <-> A e. B ) ) |
|
| 4 | 3 | pm5.32ri | |- ( ( x e. B /\ x = A ) <-> ( A e. B /\ x = A ) ) |
| 5 | 4 | imbi1i | |- ( ( ( x e. B /\ x = A ) -> ph ) <-> ( ( A e. B /\ x = A ) -> ph ) ) |
| 6 | impexp | |- ( ( ( x e. B /\ x = A ) -> ph ) <-> ( x e. B -> ( x = A -> ph ) ) ) |
|
| 7 | impexp | |- ( ( ( A e. B /\ x = A ) -> ph ) <-> ( A e. B -> ( x = A -> ph ) ) ) |
|
| 8 | 5 6 7 | 3bitr3i | |- ( ( x e. B -> ( x = A -> ph ) ) <-> ( A e. B -> ( x = A -> ph ) ) ) |
| 9 | 8 | albii | |- ( A. x ( x e. B -> ( x = A -> ph ) ) <-> A. x ( A e. B -> ( x = A -> ph ) ) ) |
| 10 | 19.21v | |- ( A. x ( A e. B -> ( x = A -> ph ) ) <-> ( A e. B -> A. x ( x = A -> ph ) ) ) |
|
| 11 | 2 9 10 | 3bitrri | |- ( ( A e. B -> A. x ( x = A -> ph ) ) <-> A. x e. B ( x = A -> ph ) ) |
| 12 | 1 11 | bitrdi | |- ( A e. B -> ( A. x ( x = A -> ph ) <-> A. x e. B ( x = A -> ph ) ) ) |
| 13 | 12 | 3ad2ant3 | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A. x ( x = A -> ph ) <-> A. x e. B ( x = A -> ph ) ) ) |
| 14 | ceqsalt | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A. x ( x = A -> ph ) <-> ps ) ) |
|
| 15 | 13 14 | bitr3d | |- ( ( F/ x ps /\ A. x ( x = A -> ( ph <-> ps ) ) /\ A e. B ) -> ( A. x e. B ( x = A -> ph ) <-> ps ) ) |