This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closed theorem version of ceqsalg . (Contributed by NM, 28-Feb-2013) (Revised by Mario Carneiro, 10-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ceqsalt | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biimp | ⊢ ( ( 𝜑 ↔ 𝜓 ) → ( 𝜑 → 𝜓 ) ) | |
| 2 | 1 | imim3i | ⊢ ( ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ( 𝑥 = 𝐴 → 𝜑 ) → ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 3 | 2 | al2imi | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 4 | elisset | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 5 | 19.23t | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) ↔ ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) | |
| 6 | 5 | biimpd | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) ) |
| 7 | 4 6 | syl7 | ⊢ ( Ⅎ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜓 ) → ( 𝐴 ∈ 𝑉 → 𝜓 ) ) ) |
| 8 | 3 7 | sylan9r | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ( 𝐴 ∈ 𝑉 → 𝜓 ) ) ) |
| 9 | 8 | com23 | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → 𝜓 ) ) ) |
| 10 | 9 | 3impia | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → 𝜓 ) ) |
| 11 | ceqsal1t | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) | |
| 12 | 11 | 3adant3 | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) ) |
| 13 | 10 12 | impbid | ⊢ ( ( Ⅎ 𝑥 𝜓 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ∧ 𝐴 ∈ 𝑉 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |