This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of eight existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsex8v.1 | ⊢ 𝐴 ∈ V | |
| ceqsex8v.2 | ⊢ 𝐵 ∈ V | ||
| ceqsex8v.3 | ⊢ 𝐶 ∈ V | ||
| ceqsex8v.4 | ⊢ 𝐷 ∈ V | ||
| ceqsex8v.5 | ⊢ 𝐸 ∈ V | ||
| ceqsex8v.6 | ⊢ 𝐹 ∈ V | ||
| ceqsex8v.7 | ⊢ 𝐺 ∈ V | ||
| ceqsex8v.8 | ⊢ 𝐻 ∈ V | ||
| ceqsex8v.9 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| ceqsex8v.10 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| ceqsex8v.11 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | ||
| ceqsex8v.12 | ⊢ ( 𝑤 = 𝐷 → ( 𝜃 ↔ 𝜏 ) ) | ||
| ceqsex8v.13 | ⊢ ( 𝑣 = 𝐸 → ( 𝜏 ↔ 𝜂 ) ) | ||
| ceqsex8v.14 | ⊢ ( 𝑢 = 𝐹 → ( 𝜂 ↔ 𝜁 ) ) | ||
| ceqsex8v.15 | ⊢ ( 𝑡 = 𝐺 → ( 𝜁 ↔ 𝜎 ) ) | ||
| ceqsex8v.16 | ⊢ ( 𝑠 = 𝐻 → ( 𝜎 ↔ 𝜌 ) ) | ||
| Assertion | ceqsex8v | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ) ∧ 𝜑 ) ↔ 𝜌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex8v.1 | ⊢ 𝐴 ∈ V | |
| 2 | ceqsex8v.2 | ⊢ 𝐵 ∈ V | |
| 3 | ceqsex8v.3 | ⊢ 𝐶 ∈ V | |
| 4 | ceqsex8v.4 | ⊢ 𝐷 ∈ V | |
| 5 | ceqsex8v.5 | ⊢ 𝐸 ∈ V | |
| 6 | ceqsex8v.6 | ⊢ 𝐹 ∈ V | |
| 7 | ceqsex8v.7 | ⊢ 𝐺 ∈ V | |
| 8 | ceqsex8v.8 | ⊢ 𝐻 ∈ V | |
| 9 | ceqsex8v.9 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 10 | ceqsex8v.10 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 11 | ceqsex8v.11 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | |
| 12 | ceqsex8v.12 | ⊢ ( 𝑤 = 𝐷 → ( 𝜃 ↔ 𝜏 ) ) | |
| 13 | ceqsex8v.13 | ⊢ ( 𝑣 = 𝐸 → ( 𝜏 ↔ 𝜂 ) ) | |
| 14 | ceqsex8v.14 | ⊢ ( 𝑢 = 𝐹 → ( 𝜂 ↔ 𝜁 ) ) | |
| 15 | ceqsex8v.15 | ⊢ ( 𝑡 = 𝐺 → ( 𝜁 ↔ 𝜎 ) ) | |
| 16 | ceqsex8v.16 | ⊢ ( 𝑠 = 𝐻 → ( 𝜎 ↔ 𝜌 ) ) | |
| 17 | 19.42vv | ⊢ ( ∃ 𝑡 ∃ 𝑠 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ↔ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ) | |
| 18 | 17 | 2exbii | ⊢ ( ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ↔ ∃ 𝑣 ∃ 𝑢 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ) |
| 19 | 19.42vv | ⊢ ( ∃ 𝑣 ∃ 𝑢 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ↔ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ) | |
| 20 | 18 19 | bitri | ⊢ ( ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ↔ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ) |
| 21 | 3anass | ⊢ ( ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ) ∧ 𝜑 ) ↔ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ) ∧ 𝜑 ) ) ) | |
| 22 | df-3an | ⊢ ( ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ↔ ( ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ) ∧ 𝜑 ) ) | |
| 23 | 22 | anbi2i | ⊢ ( ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ↔ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ) ∧ 𝜑 ) ) ) |
| 24 | 21 23 | bitr4i | ⊢ ( ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ) ∧ 𝜑 ) ↔ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ) |
| 25 | 24 | 2exbii | ⊢ ( ∃ 𝑡 ∃ 𝑠 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ) ∧ 𝜑 ) ↔ ∃ 𝑡 ∃ 𝑠 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ) |
| 26 | 25 | 2exbii | ⊢ ( ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ) ∧ 𝜑 ) ↔ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ) |
| 27 | df-3an | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ↔ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ) | |
| 28 | 20 26 27 | 3bitr4i | ⊢ ( ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ) |
| 29 | 28 | 2exbii | ⊢ ( ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ) |
| 30 | 29 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ) |
| 31 | 9 | 3anbi3d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ↔ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜓 ) ) ) |
| 32 | 31 | 4exbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ↔ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜓 ) ) ) |
| 33 | 10 | 3anbi3d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜓 ) ↔ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜒 ) ) ) |
| 34 | 33 | 4exbidv | ⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜓 ) ↔ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜒 ) ) ) |
| 35 | 11 | 3anbi3d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜒 ) ↔ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜃 ) ) ) |
| 36 | 35 | 4exbidv | ⊢ ( 𝑧 = 𝐶 → ( ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜒 ) ↔ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜃 ) ) ) |
| 37 | 12 | 3anbi3d | ⊢ ( 𝑤 = 𝐷 → ( ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜃 ) ↔ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜏 ) ) ) |
| 38 | 37 | 4exbidv | ⊢ ( 𝑤 = 𝐷 → ( ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜃 ) ↔ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜏 ) ) ) |
| 39 | 1 2 3 4 32 34 36 38 | ceqsex4v | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜑 ) ) ↔ ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜏 ) ) |
| 40 | 5 6 7 8 13 14 15 16 | ceqsex4v | ⊢ ( ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ∧ 𝜏 ) ↔ 𝜌 ) |
| 41 | 30 39 40 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ∃ 𝑡 ∃ 𝑠 ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ) ∧ ( ( 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ ( 𝑡 = 𝐺 ∧ 𝑠 = 𝐻 ) ) ∧ 𝜑 ) ↔ 𝜌 ) |