This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996) (Proof shortened by Andrew Salmon, 8-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gencbvex.1 | ⊢ 𝐴 ∈ V | |
| gencbvex.2 | ⊢ ( 𝐴 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| gencbvex.3 | ⊢ ( 𝐴 = 𝑦 → ( 𝜒 ↔ 𝜃 ) ) | ||
| gencbvex.4 | ⊢ ( 𝜃 ↔ ∃ 𝑥 ( 𝜒 ∧ 𝐴 = 𝑦 ) ) | ||
| Assertion | gencbvex | ⊢ ( ∃ 𝑥 ( 𝜒 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝜃 ∧ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gencbvex.1 | ⊢ 𝐴 ∈ V | |
| 2 | gencbvex.2 | ⊢ ( 𝐴 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | gencbvex.3 | ⊢ ( 𝐴 = 𝑦 → ( 𝜒 ↔ 𝜃 ) ) | |
| 4 | gencbvex.4 | ⊢ ( 𝜃 ↔ ∃ 𝑥 ( 𝜒 ∧ 𝐴 = 𝑦 ) ) | |
| 5 | excom | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ∃ 𝑥 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ) | |
| 6 | 3 2 | anbi12d | ⊢ ( 𝐴 = 𝑦 → ( ( 𝜒 ∧ 𝜑 ) ↔ ( 𝜃 ∧ 𝜓 ) ) ) |
| 7 | 6 | bicomd | ⊢ ( 𝐴 = 𝑦 → ( ( 𝜃 ∧ 𝜓 ) ↔ ( 𝜒 ∧ 𝜑 ) ) ) |
| 8 | 7 | eqcoms | ⊢ ( 𝑦 = 𝐴 → ( ( 𝜃 ∧ 𝜓 ) ↔ ( 𝜒 ∧ 𝜑 ) ) ) |
| 9 | 1 8 | ceqsexv | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( 𝜒 ∧ 𝜑 ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ∃ 𝑥 ( 𝜒 ∧ 𝜑 ) ) |
| 11 | 19.41v | ⊢ ( ∃ 𝑥 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( ∃ 𝑥 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ) | |
| 12 | simpr | ⊢ ( ( ∃ 𝑥 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) → ( 𝜃 ∧ 𝜓 ) ) | |
| 13 | eqcom | ⊢ ( 𝐴 = 𝑦 ↔ 𝑦 = 𝐴 ) | |
| 14 | 13 | biimpi | ⊢ ( 𝐴 = 𝑦 → 𝑦 = 𝐴 ) |
| 15 | 14 | adantl | ⊢ ( ( 𝜒 ∧ 𝐴 = 𝑦 ) → 𝑦 = 𝐴 ) |
| 16 | 15 | eximi | ⊢ ( ∃ 𝑥 ( 𝜒 ∧ 𝐴 = 𝑦 ) → ∃ 𝑥 𝑦 = 𝐴 ) |
| 17 | 4 16 | sylbi | ⊢ ( 𝜃 → ∃ 𝑥 𝑦 = 𝐴 ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜃 ∧ 𝜓 ) → ∃ 𝑥 𝑦 = 𝐴 ) |
| 19 | 18 | ancri | ⊢ ( ( 𝜃 ∧ 𝜓 ) → ( ∃ 𝑥 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ) |
| 20 | 12 19 | impbii | ⊢ ( ( ∃ 𝑥 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( 𝜃 ∧ 𝜓 ) ) |
| 21 | 11 20 | bitri | ⊢ ( ∃ 𝑥 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ( 𝜃 ∧ 𝜓 ) ) |
| 22 | 21 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑥 ( 𝑦 = 𝐴 ∧ ( 𝜃 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ( 𝜃 ∧ 𝜓 ) ) |
| 23 | 5 10 22 | 3bitr3i | ⊢ ( ∃ 𝑥 ( 𝜒 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝜃 ∧ 𝜓 ) ) |