This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsex6v.1 | ⊢ 𝐴 ∈ V | |
| ceqsex6v.2 | ⊢ 𝐵 ∈ V | ||
| ceqsex6v.3 | ⊢ 𝐶 ∈ V | ||
| ceqsex6v.4 | ⊢ 𝐷 ∈ V | ||
| ceqsex6v.5 | ⊢ 𝐸 ∈ V | ||
| ceqsex6v.6 | ⊢ 𝐹 ∈ V | ||
| ceqsex6v.7 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| ceqsex6v.8 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| ceqsex6v.9 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | ||
| ceqsex6v.10 | ⊢ ( 𝑤 = 𝐷 → ( 𝜃 ↔ 𝜏 ) ) | ||
| ceqsex6v.11 | ⊢ ( 𝑣 = 𝐸 → ( 𝜏 ↔ 𝜂 ) ) | ||
| ceqsex6v.12 | ⊢ ( 𝑢 = 𝐹 → ( 𝜂 ↔ 𝜁 ) ) | ||
| Assertion | ceqsex6v | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ 𝜁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex6v.1 | ⊢ 𝐴 ∈ V | |
| 2 | ceqsex6v.2 | ⊢ 𝐵 ∈ V | |
| 3 | ceqsex6v.3 | ⊢ 𝐶 ∈ V | |
| 4 | ceqsex6v.4 | ⊢ 𝐷 ∈ V | |
| 5 | ceqsex6v.5 | ⊢ 𝐸 ∈ V | |
| 6 | ceqsex6v.6 | ⊢ 𝐹 ∈ V | |
| 7 | ceqsex6v.7 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 8 | ceqsex6v.8 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 9 | ceqsex6v.9 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | |
| 10 | ceqsex6v.10 | ⊢ ( 𝑤 = 𝐷 → ( 𝜃 ↔ 𝜏 ) ) | |
| 11 | ceqsex6v.11 | ⊢ ( 𝑣 = 𝐸 → ( 𝜏 ↔ 𝜂 ) ) | |
| 12 | ceqsex6v.12 | ⊢ ( 𝑢 = 𝐹 → ( 𝜂 ↔ 𝜁 ) ) | |
| 13 | 3anass | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ) | |
| 14 | 13 | 3exbii | ⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ) |
| 15 | 19.42vvv | ⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ) | |
| 16 | 14 15 | bitri | ⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ) |
| 17 | 16 | 3exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ) |
| 18 | 7 | anbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜓 ) ) ) |
| 19 | 18 | 3exbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜓 ) ) ) |
| 20 | 8 | anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜓 ) ↔ ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜒 ) ) ) |
| 21 | 20 | 3exbidv | ⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜓 ) ↔ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜒 ) ) ) |
| 22 | 9 | anbi2d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜒 ) ↔ ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜃 ) ) ) |
| 23 | 22 | 3exbidv | ⊢ ( 𝑧 = 𝐶 → ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜒 ) ↔ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜃 ) ) ) |
| 24 | 1 2 3 19 21 23 | ceqsex3v | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ) ↔ ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜃 ) ) |
| 25 | 4 5 6 10 11 12 | ceqsex3v | ⊢ ( ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜃 ) ↔ 𝜁 ) |
| 26 | 17 24 25 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ∃ 𝑣 ∃ 𝑢 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ ( 𝑤 = 𝐷 ∧ 𝑣 = 𝐸 ∧ 𝑢 = 𝐹 ) ∧ 𝜑 ) ↔ 𝜁 ) |