This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of six existential quantifiers, using implicit substitution. (Contributed by NM, 21-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsex6v.1 | |- A e. _V |
|
| ceqsex6v.2 | |- B e. _V |
||
| ceqsex6v.3 | |- C e. _V |
||
| ceqsex6v.4 | |- D e. _V |
||
| ceqsex6v.5 | |- E e. _V |
||
| ceqsex6v.6 | |- F e. _V |
||
| ceqsex6v.7 | |- ( x = A -> ( ph <-> ps ) ) |
||
| ceqsex6v.8 | |- ( y = B -> ( ps <-> ch ) ) |
||
| ceqsex6v.9 | |- ( z = C -> ( ch <-> th ) ) |
||
| ceqsex6v.10 | |- ( w = D -> ( th <-> ta ) ) |
||
| ceqsex6v.11 | |- ( v = E -> ( ta <-> et ) ) |
||
| ceqsex6v.12 | |- ( u = F -> ( et <-> ze ) ) |
||
| Assertion | ceqsex6v | |- ( E. x E. y E. z E. w E. v E. u ( ( x = A /\ y = B /\ z = C ) /\ ( w = D /\ v = E /\ u = F ) /\ ph ) <-> ze ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex6v.1 | |- A e. _V |
|
| 2 | ceqsex6v.2 | |- B e. _V |
|
| 3 | ceqsex6v.3 | |- C e. _V |
|
| 4 | ceqsex6v.4 | |- D e. _V |
|
| 5 | ceqsex6v.5 | |- E e. _V |
|
| 6 | ceqsex6v.6 | |- F e. _V |
|
| 7 | ceqsex6v.7 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 8 | ceqsex6v.8 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 9 | ceqsex6v.9 | |- ( z = C -> ( ch <-> th ) ) |
|
| 10 | ceqsex6v.10 | |- ( w = D -> ( th <-> ta ) ) |
|
| 11 | ceqsex6v.11 | |- ( v = E -> ( ta <-> et ) ) |
|
| 12 | ceqsex6v.12 | |- ( u = F -> ( et <-> ze ) ) |
|
| 13 | 3anass | |- ( ( ( x = A /\ y = B /\ z = C ) /\ ( w = D /\ v = E /\ u = F ) /\ ph ) <-> ( ( x = A /\ y = B /\ z = C ) /\ ( ( w = D /\ v = E /\ u = F ) /\ ph ) ) ) |
|
| 14 | 13 | 3exbii | |- ( E. w E. v E. u ( ( x = A /\ y = B /\ z = C ) /\ ( w = D /\ v = E /\ u = F ) /\ ph ) <-> E. w E. v E. u ( ( x = A /\ y = B /\ z = C ) /\ ( ( w = D /\ v = E /\ u = F ) /\ ph ) ) ) |
| 15 | 19.42vvv | |- ( E. w E. v E. u ( ( x = A /\ y = B /\ z = C ) /\ ( ( w = D /\ v = E /\ u = F ) /\ ph ) ) <-> ( ( x = A /\ y = B /\ z = C ) /\ E. w E. v E. u ( ( w = D /\ v = E /\ u = F ) /\ ph ) ) ) |
|
| 16 | 14 15 | bitri | |- ( E. w E. v E. u ( ( x = A /\ y = B /\ z = C ) /\ ( w = D /\ v = E /\ u = F ) /\ ph ) <-> ( ( x = A /\ y = B /\ z = C ) /\ E. w E. v E. u ( ( w = D /\ v = E /\ u = F ) /\ ph ) ) ) |
| 17 | 16 | 3exbii | |- ( E. x E. y E. z E. w E. v E. u ( ( x = A /\ y = B /\ z = C ) /\ ( w = D /\ v = E /\ u = F ) /\ ph ) <-> E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ E. w E. v E. u ( ( w = D /\ v = E /\ u = F ) /\ ph ) ) ) |
| 18 | 7 | anbi2d | |- ( x = A -> ( ( ( w = D /\ v = E /\ u = F ) /\ ph ) <-> ( ( w = D /\ v = E /\ u = F ) /\ ps ) ) ) |
| 19 | 18 | 3exbidv | |- ( x = A -> ( E. w E. v E. u ( ( w = D /\ v = E /\ u = F ) /\ ph ) <-> E. w E. v E. u ( ( w = D /\ v = E /\ u = F ) /\ ps ) ) ) |
| 20 | 8 | anbi2d | |- ( y = B -> ( ( ( w = D /\ v = E /\ u = F ) /\ ps ) <-> ( ( w = D /\ v = E /\ u = F ) /\ ch ) ) ) |
| 21 | 20 | 3exbidv | |- ( y = B -> ( E. w E. v E. u ( ( w = D /\ v = E /\ u = F ) /\ ps ) <-> E. w E. v E. u ( ( w = D /\ v = E /\ u = F ) /\ ch ) ) ) |
| 22 | 9 | anbi2d | |- ( z = C -> ( ( ( w = D /\ v = E /\ u = F ) /\ ch ) <-> ( ( w = D /\ v = E /\ u = F ) /\ th ) ) ) |
| 23 | 22 | 3exbidv | |- ( z = C -> ( E. w E. v E. u ( ( w = D /\ v = E /\ u = F ) /\ ch ) <-> E. w E. v E. u ( ( w = D /\ v = E /\ u = F ) /\ th ) ) ) |
| 24 | 1 2 3 19 21 23 | ceqsex3v | |- ( E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ E. w E. v E. u ( ( w = D /\ v = E /\ u = F ) /\ ph ) ) <-> E. w E. v E. u ( ( w = D /\ v = E /\ u = F ) /\ th ) ) |
| 25 | 4 5 6 10 11 12 | ceqsex3v | |- ( E. w E. v E. u ( ( w = D /\ v = E /\ u = F ) /\ th ) <-> ze ) |
| 26 | 17 24 25 | 3bitri | |- ( E. x E. y E. z E. w E. v E. u ( ( x = A /\ y = B /\ z = C ) /\ ( w = D /\ v = E /\ u = F ) /\ ph ) <-> ze ) |