This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsex4v.1 | |- A e. _V |
|
| ceqsex4v.2 | |- B e. _V |
||
| ceqsex4v.3 | |- C e. _V |
||
| ceqsex4v.4 | |- D e. _V |
||
| ceqsex4v.7 | |- ( x = A -> ( ph <-> ps ) ) |
||
| ceqsex4v.8 | |- ( y = B -> ( ps <-> ch ) ) |
||
| ceqsex4v.9 | |- ( z = C -> ( ch <-> th ) ) |
||
| ceqsex4v.10 | |- ( w = D -> ( th <-> ta ) ) |
||
| Assertion | ceqsex4v | |- ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex4v.1 | |- A e. _V |
|
| 2 | ceqsex4v.2 | |- B e. _V |
|
| 3 | ceqsex4v.3 | |- C e. _V |
|
| 4 | ceqsex4v.4 | |- D e. _V |
|
| 5 | ceqsex4v.7 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 6 | ceqsex4v.8 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 7 | ceqsex4v.9 | |- ( z = C -> ( ch <-> th ) ) |
|
| 8 | ceqsex4v.10 | |- ( w = D -> ( th <-> ta ) ) |
|
| 9 | 19.42vv | |- ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D /\ ph ) ) <-> ( ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D /\ ph ) ) ) |
|
| 10 | 3anass | |- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ( ( x = A /\ y = B ) /\ ( ( z = C /\ w = D ) /\ ph ) ) ) |
|
| 11 | df-3an | |- ( ( z = C /\ w = D /\ ph ) <-> ( ( z = C /\ w = D ) /\ ph ) ) |
|
| 12 | 11 | anbi2i | |- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D /\ ph ) ) <-> ( ( x = A /\ y = B ) /\ ( ( z = C /\ w = D ) /\ ph ) ) ) |
| 13 | 10 12 | bitr4i | |- ( ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ( ( x = A /\ y = B ) /\ ( z = C /\ w = D /\ ph ) ) ) |
| 14 | 13 | 2exbii | |- ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D /\ ph ) ) ) |
| 15 | df-3an | |- ( ( x = A /\ y = B /\ E. z E. w ( z = C /\ w = D /\ ph ) ) <-> ( ( x = A /\ y = B ) /\ E. z E. w ( z = C /\ w = D /\ ph ) ) ) |
|
| 16 | 9 14 15 | 3bitr4i | |- ( E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ( x = A /\ y = B /\ E. z E. w ( z = C /\ w = D /\ ph ) ) ) |
| 17 | 16 | 2exbii | |- ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> E. x E. y ( x = A /\ y = B /\ E. z E. w ( z = C /\ w = D /\ ph ) ) ) |
| 18 | 5 | 3anbi3d | |- ( x = A -> ( ( z = C /\ w = D /\ ph ) <-> ( z = C /\ w = D /\ ps ) ) ) |
| 19 | 18 | 2exbidv | |- ( x = A -> ( E. z E. w ( z = C /\ w = D /\ ph ) <-> E. z E. w ( z = C /\ w = D /\ ps ) ) ) |
| 20 | 6 | 3anbi3d | |- ( y = B -> ( ( z = C /\ w = D /\ ps ) <-> ( z = C /\ w = D /\ ch ) ) ) |
| 21 | 20 | 2exbidv | |- ( y = B -> ( E. z E. w ( z = C /\ w = D /\ ps ) <-> E. z E. w ( z = C /\ w = D /\ ch ) ) ) |
| 22 | 1 2 19 21 | ceqsex2v | |- ( E. x E. y ( x = A /\ y = B /\ E. z E. w ( z = C /\ w = D /\ ph ) ) <-> E. z E. w ( z = C /\ w = D /\ ch ) ) |
| 23 | 3 4 7 8 | ceqsex2v | |- ( E. z E. w ( z = C /\ w = D /\ ch ) <-> ta ) |
| 24 | 17 22 23 | 3bitri | |- ( E. x E. y E. z E. w ( ( x = A /\ y = B ) /\ ( z = C /\ w = D ) /\ ph ) <-> ta ) |