This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of ceqsalg , not using ceqsalt . (Contributed by NM, 29-Oct-2003) (Proof shortened by Andrew Salmon, 8-Jun-2011) (Revised by BJ, 29-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsalg.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| ceqsalg.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | ceqsalgALT | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsalg.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 2 | ceqsalg.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | elisset | ⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑥 𝑥 = 𝐴 ) | |
| 4 | nfa1 | ⊢ Ⅎ 𝑥 ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) | |
| 5 | 2 | biimpd | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 → 𝜓 ) ) |
| 6 | 5 | a2i | ⊢ ( ( 𝑥 = 𝐴 → 𝜑 ) → ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 7 | 6 | sps | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ( 𝑥 = 𝐴 → 𝜓 ) ) |
| 8 | 4 1 7 | exlimd | ⊢ ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → ( ∃ 𝑥 𝑥 = 𝐴 → 𝜓 ) ) |
| 9 | 3 8 | syl5com | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) → 𝜓 ) ) |
| 10 | 2 | biimprcd | ⊢ ( 𝜓 → ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 11 | 1 10 | alrimi | ⊢ ( 𝜓 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ) |
| 12 | 9 11 | impbid1 | ⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝜑 ) ↔ 𝜓 ) ) |