This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of ceqsalg , not using ceqsalt . (Contributed by NM, 29-Oct-2003) (Proof shortened by Andrew Salmon, 8-Jun-2011) (Revised by BJ, 29-Sep-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsalg.1 | |- F/ x ps |
|
| ceqsalg.2 | |- ( x = A -> ( ph <-> ps ) ) |
||
| Assertion | ceqsalgALT | |- ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsalg.1 | |- F/ x ps |
|
| 2 | ceqsalg.2 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 3 | elisset | |- ( A e. V -> E. x x = A ) |
|
| 4 | nfa1 | |- F/ x A. x ( x = A -> ph ) |
|
| 5 | 2 | biimpd | |- ( x = A -> ( ph -> ps ) ) |
| 6 | 5 | a2i | |- ( ( x = A -> ph ) -> ( x = A -> ps ) ) |
| 7 | 6 | sps | |- ( A. x ( x = A -> ph ) -> ( x = A -> ps ) ) |
| 8 | 4 1 7 | exlimd | |- ( A. x ( x = A -> ph ) -> ( E. x x = A -> ps ) ) |
| 9 | 3 8 | syl5com | |- ( A e. V -> ( A. x ( x = A -> ph ) -> ps ) ) |
| 10 | 2 | biimprcd | |- ( ps -> ( x = A -> ph ) ) |
| 11 | 1 10 | alrimi | |- ( ps -> A. x ( x = A -> ph ) ) |
| 12 | 9 11 | impbid1 | |- ( A e. V -> ( A. x ( x = A -> ph ) <-> ps ) ) |