This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Translate membership in a 0-based half-open integer range. (Contributed by AV, 30-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzo0addelr | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( 𝐷 ..^ ( 𝐷 + 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzo0addel | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( 𝐷 ..^ ( 𝐶 + 𝐷 ) ) ) | |
| 2 | zcn | ⊢ ( 𝐷 ∈ ℤ → 𝐷 ∈ ℂ ) | |
| 3 | elfzoel2 | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐶 ) → 𝐶 ∈ ℤ ) | |
| 4 | 3 | zcnd | ⊢ ( 𝐴 ∈ ( 0 ..^ 𝐶 ) → 𝐶 ∈ ℂ ) |
| 5 | addcom | ⊢ ( ( 𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐷 + 𝐶 ) = ( 𝐶 + 𝐷 ) ) | |
| 6 | 2 4 5 | syl2anr | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐷 + 𝐶 ) = ( 𝐶 + 𝐷 ) ) |
| 7 | 6 | oveq2d | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐷 ..^ ( 𝐷 + 𝐶 ) ) = ( 𝐷 ..^ ( 𝐶 + 𝐷 ) ) ) |
| 8 | 1 7 | eleqtrrd | ⊢ ( ( 𝐴 ∈ ( 0 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( 𝐷 ..^ ( 𝐷 + 𝐶 ) ) ) |