This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if W is the empty word. (Contributed by AV, 26-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccat1st1st | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hasheq0 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) = 0 ↔ 𝑊 = ∅ ) ) | |
| 2 | 1 | biimpa | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 0 ) → 𝑊 = ∅ ) |
| 3 | s1cli | ⊢ 〈“ ∅ ”〉 ∈ Word V | |
| 4 | ccatlid | ⊢ ( 〈“ ∅ ”〉 ∈ Word V → ( ∅ ++ 〈“ ∅ ”〉 ) = 〈“ ∅ ”〉 ) | |
| 5 | 3 4 | ax-mp | ⊢ ( ∅ ++ 〈“ ∅ ”〉 ) = 〈“ ∅ ”〉 |
| 6 | 5 | fveq1i | ⊢ ( ( ∅ ++ 〈“ ∅ ”〉 ) ‘ 0 ) = ( 〈“ ∅ ”〉 ‘ 0 ) |
| 7 | 0ex | ⊢ ∅ ∈ V | |
| 8 | s1fv | ⊢ ( ∅ ∈ V → ( 〈“ ∅ ”〉 ‘ 0 ) = ∅ ) | |
| 9 | 7 8 | ax-mp | ⊢ ( 〈“ ∅ ”〉 ‘ 0 ) = ∅ |
| 10 | 6 9 | eqtri | ⊢ ( ( ∅ ++ 〈“ ∅ ”〉 ) ‘ 0 ) = ∅ |
| 11 | id | ⊢ ( 𝑊 = ∅ → 𝑊 = ∅ ) | |
| 12 | fveq1 | ⊢ ( 𝑊 = ∅ → ( 𝑊 ‘ 0 ) = ( ∅ ‘ 0 ) ) | |
| 13 | 0fv | ⊢ ( ∅ ‘ 0 ) = ∅ | |
| 14 | 12 13 | eqtrdi | ⊢ ( 𝑊 = ∅ → ( 𝑊 ‘ 0 ) = ∅ ) |
| 15 | 14 | s1eqd | ⊢ ( 𝑊 = ∅ → 〈“ ( 𝑊 ‘ 0 ) ”〉 = 〈“ ∅ ”〉 ) |
| 16 | 11 15 | oveq12d | ⊢ ( 𝑊 = ∅ → ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) = ( ∅ ++ 〈“ ∅ ”〉 ) ) |
| 17 | 16 | fveq1d | ⊢ ( 𝑊 = ∅ → ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ‘ 0 ) = ( ( ∅ ++ 〈“ ∅ ”〉 ) ‘ 0 ) ) |
| 18 | 10 17 14 | 3eqtr4a | ⊢ ( 𝑊 = ∅ → ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
| 19 | 2 18 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 0 ) → ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
| 20 | 1 | necon3bid | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ♯ ‘ 𝑊 ) ≠ 0 ↔ 𝑊 ≠ ∅ ) ) |
| 21 | 20 | biimpa | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ≠ 0 ) → 𝑊 ≠ ∅ ) |
| 22 | lennncl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 23 | 21 22 | syldan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ≠ 0 ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 24 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) | |
| 25 | 23 24 | sylibr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ≠ 0 ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 26 | ccats1val1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) | |
| 27 | 25 26 | syldan | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ≠ 0 ) → ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
| 28 | 19 27 | pm2.61dane | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |