This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first symbol of a word concatenated with its first symbol is the first symbol of the word. This theorem holds even if W is the empty word. (Contributed by AV, 26-Mar-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccat1st1st | |- ( W e. Word V -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hasheq0 | |- ( W e. Word V -> ( ( # ` W ) = 0 <-> W = (/) ) ) |
|
| 2 | 1 | biimpa | |- ( ( W e. Word V /\ ( # ` W ) = 0 ) -> W = (/) ) |
| 3 | s1cli | |- <" (/) "> e. Word _V |
|
| 4 | ccatlid | |- ( <" (/) "> e. Word _V -> ( (/) ++ <" (/) "> ) = <" (/) "> ) |
|
| 5 | 3 4 | ax-mp | |- ( (/) ++ <" (/) "> ) = <" (/) "> |
| 6 | 5 | fveq1i | |- ( ( (/) ++ <" (/) "> ) ` 0 ) = ( <" (/) "> ` 0 ) |
| 7 | 0ex | |- (/) e. _V |
|
| 8 | s1fv | |- ( (/) e. _V -> ( <" (/) "> ` 0 ) = (/) ) |
|
| 9 | 7 8 | ax-mp | |- ( <" (/) "> ` 0 ) = (/) |
| 10 | 6 9 | eqtri | |- ( ( (/) ++ <" (/) "> ) ` 0 ) = (/) |
| 11 | id | |- ( W = (/) -> W = (/) ) |
|
| 12 | fveq1 | |- ( W = (/) -> ( W ` 0 ) = ( (/) ` 0 ) ) |
|
| 13 | 0fv | |- ( (/) ` 0 ) = (/) |
|
| 14 | 12 13 | eqtrdi | |- ( W = (/) -> ( W ` 0 ) = (/) ) |
| 15 | 14 | s1eqd | |- ( W = (/) -> <" ( W ` 0 ) "> = <" (/) "> ) |
| 16 | 11 15 | oveq12d | |- ( W = (/) -> ( W ++ <" ( W ` 0 ) "> ) = ( (/) ++ <" (/) "> ) ) |
| 17 | 16 | fveq1d | |- ( W = (/) -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( ( (/) ++ <" (/) "> ) ` 0 ) ) |
| 18 | 10 17 14 | 3eqtr4a | |- ( W = (/) -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) ) |
| 19 | 2 18 | syl | |- ( ( W e. Word V /\ ( # ` W ) = 0 ) -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) ) |
| 20 | 1 | necon3bid | |- ( W e. Word V -> ( ( # ` W ) =/= 0 <-> W =/= (/) ) ) |
| 21 | 20 | biimpa | |- ( ( W e. Word V /\ ( # ` W ) =/= 0 ) -> W =/= (/) ) |
| 22 | lennncl | |- ( ( W e. Word V /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
|
| 23 | 21 22 | syldan | |- ( ( W e. Word V /\ ( # ` W ) =/= 0 ) -> ( # ` W ) e. NN ) |
| 24 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` W ) ) <-> ( # ` W ) e. NN ) |
|
| 25 | 23 24 | sylibr | |- ( ( W e. Word V /\ ( # ` W ) =/= 0 ) -> 0 e. ( 0 ..^ ( # ` W ) ) ) |
| 26 | ccats1val1 | |- ( ( W e. Word V /\ 0 e. ( 0 ..^ ( # ` W ) ) ) -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) ) |
|
| 27 | 25 26 | syldan | |- ( ( W e. Word V /\ ( # ` W ) =/= 0 ) -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) ) |
| 28 | 19 27 | pm2.61dane | |- ( W e. Word V -> ( ( W ++ <" ( W ` 0 ) "> ) ` 0 ) = ( W ` 0 ) ) |