This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Version of cbvrmo with a disjoint variable condition, which does not require ax-10 , ax-13 . (Contributed by NM, 16-Jun-2017) Avoid ax-10 , ax-13 . (Revised by GG, 23-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvrmow.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| cbvrmow.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbvrmow.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvrmow | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑦 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrmow.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | cbvrmow.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | cbvrmow.3 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 | |
| 5 | 4 1 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
| 6 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝐴 | |
| 7 | 6 2 | nfan | ⊢ Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) |
| 8 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 9 | 8 3 | anbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) ) |
| 10 | 5 7 9 | cbvmow | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) |
| 11 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 12 | df-rmo | ⊢ ( ∃* 𝑦 ∈ 𝐴 𝜓 ↔ ∃* 𝑦 ( 𝑦 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 13 | 10 11 12 | 3bitr4i | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑦 ∈ 𝐴 𝜓 ) |