This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variables in a description binder. Version of cbviota with a disjoint variable condition, which does not require ax-13 . (Contributed by Andrew Salmon, 1-Aug-2011) Avoid ax-13 . (Revised by GG, 26-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbviotaw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| cbviotaw.2 | ⊢ Ⅎ 𝑦 𝜑 | ||
| cbviotaw.3 | ⊢ Ⅎ 𝑥 𝜓 | ||
| Assertion | cbviotaw | ⊢ ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑦 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviotaw.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | cbviotaw.2 | ⊢ Ⅎ 𝑦 𝜑 | |
| 3 | cbviotaw.3 | ⊢ Ⅎ 𝑥 𝜓 | |
| 4 | nfv | ⊢ Ⅎ 𝑧 ( 𝜑 ↔ 𝑥 = 𝑤 ) | |
| 5 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 | |
| 6 | nfv | ⊢ Ⅎ 𝑥 𝑧 = 𝑤 | |
| 7 | 5 6 | nfbi | ⊢ Ⅎ 𝑥 ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 = 𝑤 ) |
| 8 | sbequ12 | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 9 | equequ1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 = 𝑤 ↔ 𝑧 = 𝑤 ) ) | |
| 10 | 8 9 | bibi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 = 𝑤 ) ) ) |
| 11 | 4 7 10 | cbvalv1 | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 = 𝑤 ) ) |
| 12 | 2 | nfsbv | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 |
| 13 | nfv | ⊢ Ⅎ 𝑦 𝑧 = 𝑤 | |
| 14 | 12 13 | nfbi | ⊢ Ⅎ 𝑦 ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 = 𝑤 ) |
| 15 | nfv | ⊢ Ⅎ 𝑧 ( 𝜓 ↔ 𝑦 = 𝑤 ) | |
| 16 | 3 1 | sbhypf | ⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 17 | equequ1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 = 𝑤 ↔ 𝑦 = 𝑤 ) ) | |
| 18 | 16 17 | bibi12d | ⊢ ( 𝑧 = 𝑦 → ( ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 = 𝑤 ) ↔ ( 𝜓 ↔ 𝑦 = 𝑤 ) ) ) |
| 19 | 14 15 18 | cbvalv1 | ⊢ ( ∀ 𝑧 ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝑧 = 𝑤 ) ↔ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑤 ) ) |
| 20 | 11 19 | bitri | ⊢ ( ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) ↔ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑤 ) ) |
| 21 | 20 | abbii | ⊢ { 𝑤 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) } = { 𝑤 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑤 ) } |
| 22 | 21 | unieqi | ⊢ ∪ { 𝑤 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) } = ∪ { 𝑤 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑤 ) } |
| 23 | dfiota2 | ⊢ ( ℩ 𝑥 𝜑 ) = ∪ { 𝑤 ∣ ∀ 𝑥 ( 𝜑 ↔ 𝑥 = 𝑤 ) } | |
| 24 | dfiota2 | ⊢ ( ℩ 𝑦 𝜓 ) = ∪ { 𝑤 ∣ ∀ 𝑦 ( 𝜓 ↔ 𝑦 = 𝑤 ) } | |
| 25 | 22 23 24 | 3eqtr4i | ⊢ ( ℩ 𝑥 𝜑 ) = ( ℩ 𝑦 𝜓 ) |