This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A more general version of cbvralf that doesn't require A and B to be distinct from x or y . Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by Andrew Salmon, 13-Jul-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvralcsf.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| cbvralcsf.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| cbvralcsf.3 | ⊢ Ⅎ 𝑦 𝜑 | ||
| cbvralcsf.4 | ⊢ Ⅎ 𝑥 𝜓 | ||
| cbvralcsf.5 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | ||
| cbvralcsf.6 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | cbvralcsf | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralcsf.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | cbvralcsf.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | cbvralcsf.3 | ⊢ Ⅎ 𝑦 𝜑 | |
| 4 | cbvralcsf.4 | ⊢ Ⅎ 𝑥 𝜓 | |
| 5 | cbvralcsf.5 | ⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) | |
| 6 | cbvralcsf.6 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 7 | nfv | ⊢ Ⅎ 𝑧 ( 𝑥 ∈ 𝐴 → 𝜑 ) | |
| 8 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 | |
| 9 | 8 | nfcri | ⊢ Ⅎ 𝑥 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 |
| 10 | nfsbc1v | ⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 | |
| 11 | 9 10 | nfim | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → [ 𝑧 / 𝑥 ] 𝜑 ) |
| 12 | id | ⊢ ( 𝑥 = 𝑧 → 𝑥 = 𝑧 ) | |
| 13 | csbeq1a | ⊢ ( 𝑥 = 𝑧 → 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) | |
| 14 | 12 13 | eleq12d | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) ) |
| 15 | sbceq1a | ⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) | |
| 16 | 14 15 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → [ 𝑧 / 𝑥 ] 𝜑 ) ) ) |
| 17 | 7 11 16 | cbvalv1 | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑧 ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 18 | nfcv | ⊢ Ⅎ 𝑦 𝑧 | |
| 19 | 18 1 | nfcsb | ⊢ Ⅎ 𝑦 ⦋ 𝑧 / 𝑥 ⦌ 𝐴 |
| 20 | 19 | nfcri | ⊢ Ⅎ 𝑦 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 |
| 21 | 18 3 | nfsbc | ⊢ Ⅎ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 |
| 22 | 20 21 | nfim | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → [ 𝑧 / 𝑥 ] 𝜑 ) |
| 23 | nfv | ⊢ Ⅎ 𝑧 ( 𝑦 ∈ 𝐵 → 𝜓 ) | |
| 24 | id | ⊢ ( 𝑧 = 𝑦 → 𝑧 = 𝑦 ) | |
| 25 | csbeq1 | ⊢ ( 𝑧 = 𝑦 → ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) | |
| 26 | df-csb | ⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = { 𝑣 ∣ [ 𝑦 / 𝑥 ] 𝑣 ∈ 𝐴 } | |
| 27 | 2 | nfcri | ⊢ Ⅎ 𝑥 𝑣 ∈ 𝐵 |
| 28 | 5 | eleq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑣 ∈ 𝐴 ↔ 𝑣 ∈ 𝐵 ) ) |
| 29 | 27 28 | sbie | ⊢ ( [ 𝑦 / 𝑥 ] 𝑣 ∈ 𝐴 ↔ 𝑣 ∈ 𝐵 ) |
| 30 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝑣 ∈ 𝐴 ↔ [ 𝑦 / 𝑥 ] 𝑣 ∈ 𝐴 ) | |
| 31 | 29 30 | bitr3i | ⊢ ( 𝑣 ∈ 𝐵 ↔ [ 𝑦 / 𝑥 ] 𝑣 ∈ 𝐴 ) |
| 32 | 31 | eqabi | ⊢ 𝐵 = { 𝑣 ∣ [ 𝑦 / 𝑥 ] 𝑣 ∈ 𝐴 } |
| 33 | 26 32 | eqtr4i | ⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = 𝐵 |
| 34 | 25 33 | eqtrdi | ⊢ ( 𝑧 = 𝑦 → ⦋ 𝑧 / 𝑥 ⦌ 𝐴 = 𝐵 ) |
| 35 | 24 34 | eleq12d | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ↔ 𝑦 ∈ 𝐵 ) ) |
| 36 | dfsbcq | ⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 37 | sbsbc | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 38 | 4 6 | sbie | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 39 | 37 38 | bitr3i | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝜓 ) |
| 40 | 36 39 | bitrdi | ⊢ ( 𝑧 = 𝑦 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ 𝜓 ) ) |
| 41 | 35 40 | imbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ( 𝑦 ∈ 𝐵 → 𝜓 ) ) ) |
| 42 | 22 23 41 | cbvalv1 | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ ⦋ 𝑧 / 𝑥 ⦌ 𝐴 → [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜓 ) ) |
| 43 | 17 42 | bitri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜓 ) ) |
| 44 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 45 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐵 → 𝜓 ) ) | |
| 46 | 43 44 45 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐵 𝜓 ) |