This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011) (Revised by Thierry Arnoux, 9-Mar-2017) Add disjoint variable condition to avoid ax-13 . See cbvmptfg for a less restrictive version requiring more axioms. (Revised by GG, 17-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvmptf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| cbvmptf.2 | ⊢ Ⅎ 𝑦 𝐴 | ||
| cbvmptf.3 | ⊢ Ⅎ 𝑦 𝐵 | ||
| cbvmptf.4 | ⊢ Ⅎ 𝑥 𝐶 | ||
| cbvmptf.5 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | ||
| Assertion | cbvmptf | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐴 ↦ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmptf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | cbvmptf.2 | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | cbvmptf.3 | ⊢ Ⅎ 𝑦 𝐵 | |
| 4 | cbvmptf.4 | ⊢ Ⅎ 𝑥 𝐶 | |
| 5 | cbvmptf.5 | ⊢ ( 𝑥 = 𝑦 → 𝐵 = 𝐶 ) | |
| 6 | nfv | ⊢ Ⅎ 𝑤 ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) | |
| 7 | 1 | nfcri | ⊢ Ⅎ 𝑥 𝑤 ∈ 𝐴 |
| 8 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 | |
| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑥 ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) |
| 10 | eleq1w | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 ∈ 𝐴 ↔ 𝑤 ∈ 𝐴 ) ) | |
| 11 | sbequ12 | ⊢ ( 𝑥 = 𝑤 → ( 𝑧 = 𝐵 ↔ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) ) | |
| 12 | 10 11 | anbi12d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) ↔ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) ) ) |
| 13 | 6 9 12 | cbvopab1 | ⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) } = { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) } |
| 14 | 2 | nfcri | ⊢ Ⅎ 𝑦 𝑤 ∈ 𝐴 |
| 15 | 3 | nfeq2 | ⊢ Ⅎ 𝑦 𝑧 = 𝐵 |
| 16 | 15 | nfsbv | ⊢ Ⅎ 𝑦 [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 |
| 17 | 14 16 | nfan | ⊢ Ⅎ 𝑦 ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) |
| 18 | nfv | ⊢ Ⅎ 𝑤 ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) | |
| 19 | eleq1w | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 20 | sbequ | ⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ↔ [ 𝑦 / 𝑥 ] 𝑧 = 𝐵 ) ) | |
| 21 | 4 | nfeq2 | ⊢ Ⅎ 𝑥 𝑧 = 𝐶 |
| 22 | 5 | eqeq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 = 𝐵 ↔ 𝑧 = 𝐶 ) ) |
| 23 | 21 22 | sbiev | ⊢ ( [ 𝑦 / 𝑥 ] 𝑧 = 𝐵 ↔ 𝑧 = 𝐶 ) |
| 24 | 20 23 | bitrdi | ⊢ ( 𝑤 = 𝑦 → ( [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ↔ 𝑧 = 𝐶 ) ) |
| 25 | 19 24 | anbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) ) ) |
| 26 | 17 18 25 | cbvopab1 | ⊢ { 〈 𝑤 , 𝑧 〉 ∣ ( 𝑤 ∈ 𝐴 ∧ [ 𝑤 / 𝑥 ] 𝑧 = 𝐵 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) } |
| 27 | 13 26 | eqtri | ⊢ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) } |
| 28 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵 ) } | |
| 29 | df-mpt | ⊢ ( 𝑦 ∈ 𝐴 ↦ 𝐶 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 𝐶 ) } | |
| 30 | 27 28 29 | 3eqtr4i | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑦 ∈ 𝐴 ↦ 𝐶 ) |