This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011) (Revised by Thierry Arnoux, 9-Mar-2017) Add disjoint variable condition to avoid ax-13 . See cbvmptfg for a less restrictive version requiring more axioms. (Revised by GG, 17-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvmptf.1 | |- F/_ x A |
|
| cbvmptf.2 | |- F/_ y A |
||
| cbvmptf.3 | |- F/_ y B |
||
| cbvmptf.4 | |- F/_ x C |
||
| cbvmptf.5 | |- ( x = y -> B = C ) |
||
| Assertion | cbvmptf | |- ( x e. A |-> B ) = ( y e. A |-> C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmptf.1 | |- F/_ x A |
|
| 2 | cbvmptf.2 | |- F/_ y A |
|
| 3 | cbvmptf.3 | |- F/_ y B |
|
| 4 | cbvmptf.4 | |- F/_ x C |
|
| 5 | cbvmptf.5 | |- ( x = y -> B = C ) |
|
| 6 | nfv | |- F/ w ( x e. A /\ z = B ) |
|
| 7 | 1 | nfcri | |- F/ x w e. A |
| 8 | nfs1v | |- F/ x [ w / x ] z = B |
|
| 9 | 7 8 | nfan | |- F/ x ( w e. A /\ [ w / x ] z = B ) |
| 10 | eleq1w | |- ( x = w -> ( x e. A <-> w e. A ) ) |
|
| 11 | sbequ12 | |- ( x = w -> ( z = B <-> [ w / x ] z = B ) ) |
|
| 12 | 10 11 | anbi12d | |- ( x = w -> ( ( x e. A /\ z = B ) <-> ( w e. A /\ [ w / x ] z = B ) ) ) |
| 13 | 6 9 12 | cbvopab1 | |- { <. x , z >. | ( x e. A /\ z = B ) } = { <. w , z >. | ( w e. A /\ [ w / x ] z = B ) } |
| 14 | 2 | nfcri | |- F/ y w e. A |
| 15 | 3 | nfeq2 | |- F/ y z = B |
| 16 | 15 | nfsbv | |- F/ y [ w / x ] z = B |
| 17 | 14 16 | nfan | |- F/ y ( w e. A /\ [ w / x ] z = B ) |
| 18 | nfv | |- F/ w ( y e. A /\ z = C ) |
|
| 19 | eleq1w | |- ( w = y -> ( w e. A <-> y e. A ) ) |
|
| 20 | sbequ | |- ( w = y -> ( [ w / x ] z = B <-> [ y / x ] z = B ) ) |
|
| 21 | 4 | nfeq2 | |- F/ x z = C |
| 22 | 5 | eqeq2d | |- ( x = y -> ( z = B <-> z = C ) ) |
| 23 | 21 22 | sbiev | |- ( [ y / x ] z = B <-> z = C ) |
| 24 | 20 23 | bitrdi | |- ( w = y -> ( [ w / x ] z = B <-> z = C ) ) |
| 25 | 19 24 | anbi12d | |- ( w = y -> ( ( w e. A /\ [ w / x ] z = B ) <-> ( y e. A /\ z = C ) ) ) |
| 26 | 17 18 25 | cbvopab1 | |- { <. w , z >. | ( w e. A /\ [ w / x ] z = B ) } = { <. y , z >. | ( y e. A /\ z = C ) } |
| 27 | 13 26 | eqtri | |- { <. x , z >. | ( x e. A /\ z = B ) } = { <. y , z >. | ( y e. A /\ z = C ) } |
| 28 | df-mpt | |- ( x e. A |-> B ) = { <. x , z >. | ( x e. A /\ z = B ) } |
|
| 29 | df-mpt | |- ( y e. A |-> C ) = { <. y , z >. | ( y e. A /\ z = C ) } |
|
| 30 | 27 28 29 | 3eqtr4i | |- ( x e. A |-> B ) = ( y e. A |-> C ) |